Mask editing: remove use_parent property and use check if paren't id is set instead
[blender.git] / source / blender / blenkernel / intern / mask.c
1 /*
2  * ***** BEGIN GPL LICENSE BLOCK *****
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version 2
7  * of the License, or (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software Foundation,
16  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17  *
18  * The Original Code is Copyright (C) 2012 Blender Foundation.
19  * All rights reserved.
20  *
21  * Contributor(s): Blender Foundation,
22  *                 Sergey Sharybin
23  *
24  * ***** END GPL LICENSE BLOCK *****
25  */
26
27 /** \file blender/blenkernel/intern/mask.c
28  *  \ingroup bke
29  */
30
31 #include <stddef.h>
32 #include <string.h>
33
34 #include "MEM_guardedalloc.h"
35
36 #include "BLI_utildefines.h"
37 #include "BLI_path_util.h"
38 #include "BLI_string.h"
39 #include "BLI_listbase.h"
40 #include "BLI_math.h"
41
42 #include "DNA_mask_types.h"
43 #include "DNA_scene_types.h"
44 #include "DNA_object_types.h"
45 #include "DNA_screen_types.h"
46 #include "DNA_space_types.h"
47 #include "DNA_movieclip_types.h"
48 #include "DNA_tracking_types.h"
49
50 #include "BKE_curve.h"
51 #include "BKE_global.h"
52 #include "BKE_library.h"
53 #include "BKE_main.h"
54 #include "BKE_mask.h"
55 #include "BKE_tracking.h"
56 #include "BKE_movieclip.h"
57 #include "BKE_utildefines.h"
58
59 #include "raskter.h"
60
61 static MaskSplinePoint *mask_spline_point_next(MaskSpline *spline, MaskSplinePoint *points_array, MaskSplinePoint *point)
62 {
63         if (point == &points_array[spline->tot_point - 1]) {
64                 if (spline->flag & MASK_SPLINE_CYCLIC) {
65                         return &points_array[0];
66                 }
67                 else  {
68                         return NULL;
69                 }
70         }
71         else {
72                 return point + 1;
73         }
74 }
75
76 static MaskSplinePoint *mask_spline_point_prev(MaskSpline *spline, MaskSplinePoint *points_array, MaskSplinePoint *point)
77 {
78         if (point == points_array) {
79                 if (spline->flag & MASK_SPLINE_CYCLIC) {
80                         return &points_array[spline->tot_point - 1];
81                 }
82                 else  {
83                         return NULL;
84                 }
85         }
86         else {
87                 return point - 1;
88         }
89 }
90
91 static BezTriple *mask_spline_point_next_bezt(MaskSpline *spline, MaskSplinePoint *points_array, MaskSplinePoint *point)
92 {
93         if (point == &points_array[spline->tot_point - 1]) {
94                 if (spline->flag & MASK_SPLINE_CYCLIC) {
95                         return &(points_array[0].bezt);
96                 }
97                 else  {
98                         return NULL;
99                 }
100         }
101         else {
102                 return &((point + 1))->bezt;
103         }
104 }
105
106 #if 0
107 static BezTriple *mask_spline_point_prev_bezt(MaskSpline *spline, MaskSplinePoint *points_array, MaskSplinePoint *point)
108 {
109         if (point == points_array) {
110                 if (spline->flag & MASK_SPLINE_CYCLIC) {
111                         return &(points_array[0].bezt);
112                 }
113                 else  {
114                         return NULL;
115                 }
116         }
117         else {
118                 return &((point - 1))->bezt;
119         }
120 }
121 #endif
122
123 MaskSplinePoint *BKE_mask_spline_point_array(MaskSpline *spline)
124 {
125         return spline->points_deform ? spline->points_deform : spline->points;
126 }
127
128 MaskSplinePoint *BKE_mask_spline_point_array_from_point(MaskSpline *spline, MaskSplinePoint *point_ref)
129 {
130         if ((point_ref >= spline->points) && (point_ref < &spline->points[spline->tot_point])) {
131                 return spline->points;
132         }
133
134         if ((point_ref >= spline->points_deform) && (point_ref < &spline->points_deform[spline->tot_point])) {
135                 return spline->points_deform;
136         }
137
138         BLI_assert(!"wrong array");
139         return NULL;
140 }
141
142 /* mask layers */
143
144 MaskLayer *BKE_mask_layer_new(Mask *mask, const char *name)
145 {
146         MaskLayer *masklay = MEM_callocN(sizeof(MaskLayer), __func__);
147
148         if (name && name[0])
149                 BLI_strncpy(masklay->name, name, sizeof(masklay->name));
150         else
151                 strcpy(masklay->name, "MaskLayer");
152
153         BLI_addtail(&mask->masklayers, masklay);
154
155         BKE_mask_layer_unique_name(mask, masklay);
156
157         mask->masklay_tot++;
158
159         masklay->alpha = 1.0f;
160
161         return masklay;
162 }
163
164 /* note: may still be hidden, caller needs to check */
165 MaskLayer *BKE_mask_layer_active(Mask *mask)
166 {
167         return BLI_findlink(&mask->masklayers, mask->masklay_act);
168 }
169
170 void BKE_mask_layer_active_set(Mask *mask, MaskLayer *masklay)
171 {
172         mask->masklay_act = BLI_findindex(&mask->masklayers, masklay);
173 }
174
175 void BKE_mask_layer_remove(Mask *mask, MaskLayer *masklay)
176 {
177         BLI_remlink(&mask->masklayers, masklay);
178         BKE_mask_layer_free(masklay);
179
180         mask->masklay_tot--;
181
182         if (mask->masklay_act >= mask->masklay_tot)
183                 mask->masklay_act = mask->masklay_tot - 1;
184 }
185
186 void BKE_mask_layer_unique_name(Mask *mask, MaskLayer *masklay)
187 {
188         BLI_uniquename(&mask->masklayers, masklay, "MaskLayer", '.', offsetof(MaskLayer, name), sizeof(masklay->name));
189 }
190
191 /* splines */
192
193 MaskSpline *BKE_mask_spline_add(MaskLayer *masklay)
194 {
195         MaskSpline *spline;
196
197         spline = MEM_callocN(sizeof(MaskSpline), "new mask spline");
198         BLI_addtail(&masklay->splines, spline);
199
200         /* spline shall have one point at least */
201         spline->points = MEM_callocN(sizeof(MaskSplinePoint), "new mask spline point");
202         spline->tot_point = 1;
203
204         /* cyclic shapes are more usually used */
205         // spline->flag |= MASK_SPLINE_CYCLIC; // disable because its not so nice for drawing. could be done differently
206
207         spline->weight_interp = MASK_SPLINE_INTERP_LINEAR;
208
209         BKE_mask_parent_init(&spline->parent);
210
211         return spline;
212 }
213
214 static int BKE_mask_spline_resolution(MaskSpline *spline, int width, int height)
215 {
216         float max_segment = 0.01f;
217         int i, resol = 1;
218
219         if (width != 0 && height != 0) {
220                 if (width >= height)
221                         max_segment = 1.0f / (float) width;
222                 else
223                         max_segment = 1.0f / (float) height;
224         }
225
226         for (i = 0; i < spline->tot_point; i++) {
227                 MaskSplinePoint *point = &spline->points[i];
228                 BezTriple *bezt, *bezt_next;
229                 float a, b, c, len;
230                 int cur_resol;
231
232                 bezt = &point->bezt;
233                 bezt_next = mask_spline_point_next_bezt(spline, spline->points, point);
234
235                 if (bezt_next == NULL) {
236                         break;
237                 }
238
239                 a = len_v3v3(bezt->vec[1], bezt->vec[2]);
240                 b = len_v3v3(bezt->vec[2], bezt_next->vec[0]);
241                 c = len_v3v3(bezt_next->vec[0], bezt_next->vec[1]);
242
243                 len = a + b + c;
244                 cur_resol = len / max_segment;
245
246                 resol = MAX2(resol, cur_resol);
247         }
248
249         return resol;
250 }
251
252 static int BKE_mask_spline_feather_resolution(MaskSpline *spline, int width, int height)
253 {
254         const float max_segment = 0.005;
255         int resol = BKE_mask_spline_resolution(spline, width, height);
256         float max_jump = 0.0f;
257         int i;
258
259         for (i = 0; i < spline->tot_point; i++) {
260                 MaskSplinePoint *point = &spline->points[i];
261                 float prev_u, prev_w;
262                 int j;
263
264                 prev_u = 0.0f;
265                 prev_w = point->bezt.weight;
266
267                 for (j = 0; j < point->tot_uw; j++) {
268                         float jump = fabsf((point->uw[j].w - prev_w) / (point->uw[j].u - prev_u));
269
270                         max_jump = MAX2(max_jump, jump);
271
272                         prev_u = point->uw[j].u;
273                         prev_w = point->uw[j].w;
274                 }
275         }
276
277         resol += max_jump / max_segment;
278
279         return resol;
280 }
281
282 float (*BKE_mask_spline_differentiate_with_resolution(MaskSpline *spline, int width, int height,
283                                                       int *tot_diff_point))[2]
284 {
285         MaskSplinePoint *points_array = BKE_mask_spline_point_array(spline);
286
287         MaskSplinePoint *point, *prev;
288         float (*diff_points)[2], (*fp)[2];
289         int a, len, resol = BKE_mask_spline_resolution(spline, width, height);
290
291         if (spline->tot_point <= 1) {
292                 /* nothing to differentiate */
293                 *tot_diff_point = 0;
294                 return NULL;
295         }
296
297         /* count */
298         len = (spline->tot_point - 1) * resol;
299
300         if (spline->flag & MASK_SPLINE_CYCLIC)
301                 len += resol;
302         else
303                 len++;
304
305         /* len+1 because of 'forward_diff_bezier' function */
306         *tot_diff_point = len;
307         diff_points = fp = MEM_mallocN((len + 1) * sizeof(*diff_points), "mask spline vets");
308
309         a = spline->tot_point - 1;
310         if (spline->flag & MASK_SPLINE_CYCLIC)
311                 a++;
312
313         prev = points_array;
314         point = prev + 1;
315
316         while (a--) {
317                 BezTriple *prevbezt;
318                 BezTriple *bezt;
319                 int j;
320
321                 if (a == 0 && (spline->flag & MASK_SPLINE_CYCLIC))
322                         point = points_array;
323
324                 prevbezt = &prev->bezt;
325                 bezt = &point->bezt;
326
327                 for (j = 0; j < 2; j++) {
328                         BKE_curve_forward_diff_bezier(prevbezt->vec[1][j], prevbezt->vec[2][j],
329                                                       bezt->vec[0][j], bezt->vec[1][j],
330                                                       &(*fp)[j], resol, 2 * sizeof(float));
331                 }
332
333                 fp += resol;
334
335                 if (a == 0 && (spline->flag & MASK_SPLINE_CYCLIC) == 0) {
336                         copy_v2_v2(*fp, bezt->vec[1]);
337                 }
338
339                 prev = point;
340                 point++;
341         }
342
343         return diff_points;
344 }
345
346 float (*BKE_mask_spline_differentiate(MaskSpline *spline, int *tot_diff_point))[2]
347 {
348         return BKE_mask_spline_differentiate_with_resolution(spline, 0, 0, tot_diff_point);
349 }
350
351 float (*BKE_mask_spline_feather_differentiated_points_with_resolution(MaskSpline *spline, int width, int height,
352                                                                       int *tot_feather_point))[2]
353 {
354         MaskSplinePoint *points_array = BKE_mask_spline_point_array(spline);
355
356         float (*feather)[2], (*fp)[2];
357         int i, j, tot, resol = BKE_mask_spline_feather_resolution(spline, width, height);
358
359         tot = resol * spline->tot_point;
360         feather = fp = MEM_mallocN(tot * sizeof(*feather), "mask spline feather diff points");
361
362         for (i = 0; i < spline->tot_point; i++) {
363                 MaskSplinePoint *point = &points_array[i];
364
365                 for (j = 0; j < resol; j++, fp++) {
366                         float u = (float) j / resol, weight;
367                         float co[2], n[2];
368
369                         /* TODO - these calls all calculate similar things
370                          * could be unified for some speed */
371                         BKE_mask_point_segment_co(spline, point, u, co);
372                         BKE_mask_point_normal(spline, point, u, n);
373                         weight = BKE_mask_point_weight(spline, point, u);
374
375                         madd_v2_v2v2fl(*fp, co, n, weight);
376                 }
377         }
378
379         *tot_feather_point = tot;
380
381         return feather;
382 }
383
384 float (*BKE_mask_spline_feather_differentiated_points(MaskSpline *spline, int *tot_feather_point))[2]
385 {
386         return BKE_mask_spline_feather_differentiated_points_with_resolution(spline, 0, 0, tot_feather_point);
387 }
388
389 float (*BKE_mask_spline_feather_points(MaskSpline *spline, int *tot_feather_point))[2]
390 {
391         MaskSplinePoint *points_array = BKE_mask_spline_point_array(spline);
392
393         int i, tot = 0;
394         float (*feather)[2], (*fp)[2];
395
396         /* count */
397         for (i = 0; i < spline->tot_point; i++) {
398                 MaskSplinePoint *point = &points_array[i];
399
400                 tot += point->tot_uw + 1;
401         }
402
403         /* create data */
404         feather = fp = MEM_mallocN(tot * sizeof(*feather), "mask spline feather points");
405
406         for (i = 0; i < spline->tot_point; i++) {
407                 MaskSplinePoint *point = &points_array[i];
408                 BezTriple *bezt = &point->bezt;
409                 float weight, n[2];
410                 int j;
411
412                 BKE_mask_point_normal(spline, point, 0.0f, n);
413                 weight = BKE_mask_point_weight(spline, point, 0.0f);
414
415                 madd_v2_v2v2fl(*fp, bezt->vec[1], n, weight);
416                 fp++;
417
418                 for (j = 0; j < point->tot_uw; j++) {
419                         float u = point->uw[j].u;
420                         float co[2];
421
422                         BKE_mask_point_segment_co(spline, point, u, co);
423                         BKE_mask_point_normal(spline, point, u, n);
424                         weight = BKE_mask_point_weight(spline, point, u);
425
426                         madd_v2_v2v2fl(*fp, co, n, weight);
427                         fp++;
428                 }
429         }
430
431         *tot_feather_point = tot;
432
433         return feather;
434 }
435
436 void BKE_mask_point_direction_switch(MaskSplinePoint *point)
437 {
438         const int tot_uw = point->tot_uw;
439         const int tot_uw_half = tot_uw / 2;
440         int i;
441
442         float co_tmp[2];
443
444         /* swap handles */
445         copy_v2_v2(co_tmp, point->bezt.vec[0]);
446         copy_v2_v2(point->bezt.vec[0], point->bezt.vec[2]);
447         copy_v2_v2(point->bezt.vec[2], co_tmp);
448         /* in this case the flags are unlikely to be different but swap anyway */
449         SWAP(char, point->bezt.f1, point->bezt.f3);
450         SWAP(char, point->bezt.h1, point->bezt.h2);
451
452
453         /* swap UW's */
454         if (tot_uw > 1) {
455                 /* count */
456                 for (i = 0; i < tot_uw_half; i++) {
457                         MaskSplinePointUW *uw_a = &point->uw[i];
458                         MaskSplinePointUW *uw_b = &point->uw[tot_uw - (i + 1)];
459                         SWAP(MaskSplinePointUW, *uw_a, *uw_b);
460                 }
461         }
462
463         for (i = 0; i < tot_uw; i++) {
464                 MaskSplinePointUW *uw = &point->uw[i];
465                 uw->u = 1.0f - uw->u;
466         }
467 }
468
469 void BKE_mask_spline_direction_switch(MaskLayer *masklay, MaskSpline *spline)
470 {
471         const int tot_point = spline->tot_point;
472         const int tot_point_half = tot_point / 2;
473         int i, i_prev;
474
475         if (tot_point < 2) {
476                 return;
477         }
478
479         /* count */
480         for (i = 0; i < tot_point_half; i++) {
481                 MaskSplinePoint *point_a = &spline->points[i];
482                 MaskSplinePoint *point_b = &spline->points[tot_point - (i + 1)];
483                 SWAP(MaskSplinePoint, *point_a, *point_b);
484         }
485
486         /* correct UW's */
487         i_prev = tot_point - 1;
488         for (i = 0; i < tot_point; i++) {
489
490                 BKE_mask_point_direction_switch(&spline->points[i]);
491
492                 SWAP(MaskSplinePointUW *, spline->points[i].uw,     spline->points[i_prev].uw);
493                 SWAP(int,                 spline->points[i].tot_uw, spline->points[i_prev].tot_uw);
494
495                 i_prev = i;
496         }
497
498         /* correct animation */
499         if (masklay->splines_shapes.first) {
500                 MaskLayerShape *masklay_shape;
501
502                 const int spline_index = BKE_mask_layer_shape_spline_to_index(masklay, spline);
503
504                 for (masklay_shape = masklay->splines_shapes.first;
505                      masklay_shape;
506                      masklay_shape = masklay_shape->next)
507                 {
508                         MaskLayerShapeElem *fp_arr = (MaskLayerShapeElem *)masklay_shape->data;
509
510                         for (i = 0; i < tot_point_half; i++) {
511                                 MaskLayerShapeElem *fp_a = &fp_arr[spline_index +              (i)     ];
512                                 MaskLayerShapeElem *fp_b = &fp_arr[spline_index + (tot_point - (i + 1))];
513                                 SWAP(MaskLayerShapeElem, *fp_a, *fp_b);
514                         }
515                 }
516         }
517 }
518
519
520 float BKE_mask_spline_project_co(MaskSpline *spline, MaskSplinePoint *point,
521                                  float start_u, const float co[2], const eMaskSign sign)
522 {
523         const float proj_eps         = 1e-3;
524         const float proj_eps_squared = proj_eps * proj_eps;
525         const int N = 1000;
526         float u = -1.0f, du = 1.0f / N, u1 = start_u, u2 = start_u;
527         float ang = -1.0f;
528
529         BLI_assert(ABS(sign) <= 1); /* (-1, 0, 1) */
530
531         while (u1 > 0.0f || u2 < 1.0f) {
532                 float n1[2], n2[2], co1[2], co2[2];
533                 float v1[2], v2[2];
534                 float ang1, ang2;
535
536                 if (u1 >= 0.0f) {
537                         BKE_mask_point_segment_co(spline, point, u1, co1);
538                         BKE_mask_point_normal(spline, point, u1, n1);
539                         sub_v2_v2v2(v1, co, co1);
540
541                         if ((sign == MASK_PROJ_ANY) ||
542                             ((sign == MASK_PROJ_NEG) && (dot_v2v2(v1, n1) <= 0.0f)) ||
543                             ((sign == MASK_PROJ_POS) && (dot_v2v2(v1, n1) >= 0.0f)))
544                         {
545
546                                 if (len_squared_v2(v1) > proj_eps_squared) {
547                                         ang1 = angle_v2v2(v1, n1);
548                                         if (ang1 > M_PI / 2.0f)
549                                                 ang1 = M_PI  - ang1;
550
551                                         if (ang < 0.0f || ang1 < ang) {
552                                                 ang = ang1;
553                                                 u = u1;
554                                         }
555                                 }
556                                 else {
557                                         u = u1;
558                                         break;
559                                 }
560                         }
561                 }
562
563                 if (u2 <= 1.0f) {
564                         BKE_mask_point_segment_co(spline, point, u2, co2);
565                         BKE_mask_point_normal(spline, point, u2, n2);
566                         sub_v2_v2v2(v2, co, co2);
567
568                         if ((sign == MASK_PROJ_ANY) ||
569                             ((sign == MASK_PROJ_NEG) && (dot_v2v2(v2, n2) <= 0.0f)) ||
570                             ((sign == MASK_PROJ_POS) && (dot_v2v2(v2, n2) >= 0.0f)))
571                         {
572
573                                 if (len_squared_v2(v2) > proj_eps_squared) {
574                                         ang2 = angle_v2v2(v2, n2);
575                                         if (ang2 > M_PI / 2.0f)
576                                                 ang2 = M_PI  - ang2;
577
578                                         if (ang2 < ang) {
579                                                 ang = ang2;
580                                                 u = u2;
581                                         }
582                                 }
583                                 else {
584                                         u = u2;
585                                         break;
586                                 }
587                         }
588                 }
589
590                 u1 -= du;
591                 u2 += du;
592         }
593
594         return u;
595 }
596
597 /* point */
598
599 int BKE_mask_point_has_handle(MaskSplinePoint *point)
600 {
601         BezTriple *bezt = &point->bezt;
602
603         return bezt->h1 == HD_ALIGN;
604 }
605
606 void BKE_mask_point_handle(MaskSplinePoint *point, float handle[2])
607 {
608         float vec[2];
609
610         sub_v2_v2v2(vec, point->bezt.vec[0], point->bezt.vec[1]);
611
612         handle[0] = (point->bezt.vec[1][0] + vec[1]);
613         handle[1] = (point->bezt.vec[1][1] - vec[0]);
614 }
615
616 void BKE_mask_point_set_handle(MaskSplinePoint *point, float loc[2], int keep_direction,
617                                float orig_handle[2], float orig_vec[3][3])
618 {
619         BezTriple *bezt = &point->bezt;
620         float v1[2], v2[2], vec[2];
621
622         if (keep_direction) {
623                 sub_v2_v2v2(v1, loc, orig_vec[1]);
624                 sub_v2_v2v2(v2, orig_handle, orig_vec[1]);
625
626                 project_v2_v2v2(vec, v1, v2);
627
628                 if (dot_v2v2(v2, vec) > 0) {
629                         float len = len_v2(vec);
630
631                         sub_v2_v2v2(v1, orig_vec[0], orig_vec[1]);
632
633                         mul_v2_fl(v1, len / len_v2(v1));
634
635                         add_v2_v2v2(bezt->vec[0], bezt->vec[1], v1);
636                         sub_v2_v2v2(bezt->vec[2], bezt->vec[1], v1);
637                 }
638                 else {
639                         copy_v3_v3(bezt->vec[0], bezt->vec[1]);
640                         copy_v3_v3(bezt->vec[2], bezt->vec[1]);
641                 }
642         }
643         else {
644                 sub_v2_v2v2(v1, loc, bezt->vec[1]);
645
646                 v2[0] = -v1[1];
647                 v2[1] =  v1[0];
648
649                 add_v2_v2v2(bezt->vec[0], bezt->vec[1], v2);
650                 sub_v2_v2v2(bezt->vec[2], bezt->vec[1], v2);
651         }
652 }
653
654 float *BKE_mask_point_segment_feather_diff_with_resolution(MaskSpline *spline, MaskSplinePoint *point,
655                                                            int width, int height,
656                                                            int *tot_feather_point)
657 {
658         float *feather, *fp;
659         int i, resol = BKE_mask_spline_feather_resolution(spline, width, height);
660
661         feather = fp = MEM_callocN(2 * resol * sizeof(float), "mask point spline feather diff points");
662
663         for (i = 0; i < resol; i++, fp += 2) {
664                 float u = (float)(i % resol) / resol, weight;
665                 float co[2], n[2];
666
667                 BKE_mask_point_segment_co(spline, point, u, co);
668                 BKE_mask_point_normal(spline, point, u, n);
669                 weight = BKE_mask_point_weight(spline, point, u);
670
671                 fp[0] = co[0] + n[0] * weight;
672                 fp[1] = co[1] + n[1] * weight;
673         }
674
675         *tot_feather_point = resol;
676
677         return feather;
678 }
679
680 float *BKE_mask_point_segment_feather_diff(MaskSpline *spline, MaskSplinePoint *point, int *tot_feather_point)
681 {
682         return BKE_mask_point_segment_feather_diff_with_resolution(spline, point, 0, 0, tot_feather_point);
683 }
684
685 float *BKE_mask_point_segment_diff_with_resolution(MaskSpline *spline, MaskSplinePoint *point,
686                                                    int width, int height, int *tot_diff_point)
687 {
688         MaskSplinePoint *points_array = BKE_mask_spline_point_array_from_point(spline, point);
689
690         BezTriple *bezt, *bezt_next;
691         float *diff_points, *fp;
692         int j, resol = BKE_mask_spline_resolution(spline, width, height);
693
694         bezt = &point->bezt;
695         bezt_next = mask_spline_point_next_bezt(spline, points_array, point);
696
697         if (!bezt_next)
698                 return NULL;
699
700         /* resol+1 because of 'forward_diff_bezier' function */
701         *tot_diff_point = resol + 1;
702         diff_points = fp = MEM_callocN((resol + 1) * 2 * sizeof(float), "mask segment vets");
703
704         for (j = 0; j < 2; j++) {
705                 BKE_curve_forward_diff_bezier(bezt->vec[1][j], bezt->vec[2][j],
706                                               bezt_next->vec[0][j], bezt_next->vec[1][j],
707                                               fp + j, resol, 2 * sizeof(float));
708         }
709
710         copy_v2_v2(fp + 2 * resol, bezt_next->vec[1]);
711
712         return diff_points;
713 }
714
715 float *BKE_mask_point_segment_diff(MaskSpline *spline, MaskSplinePoint *point, int *tot_diff_point)
716 {
717         return BKE_mask_point_segment_diff_with_resolution(spline, point, 0, 0, tot_diff_point);
718 }
719
720 void BKE_mask_point_segment_co(MaskSpline *spline, MaskSplinePoint *point, float u, float co[2])
721 {
722         MaskSplinePoint *points_array = BKE_mask_spline_point_array_from_point(spline, point);
723
724         BezTriple *bezt = &point->bezt, *bezt_next;
725         float q0[2], q1[2], q2[2], r0[2], r1[2];
726
727         bezt_next = mask_spline_point_next_bezt(spline, points_array, point);
728
729         if (!bezt_next) {
730                 copy_v2_v2(co, bezt->vec[1]);
731                 return;
732         }
733
734         interp_v2_v2v2(q0, bezt->vec[1], bezt->vec[2], u);
735         interp_v2_v2v2(q1, bezt->vec[2], bezt_next->vec[0], u);
736         interp_v2_v2v2(q2, bezt_next->vec[0], bezt_next->vec[1], u);
737
738         interp_v2_v2v2(r0, q0, q1, u);
739         interp_v2_v2v2(r1, q1, q2, u);
740
741         interp_v2_v2v2(co, r0, r1, u);
742 }
743
744 void BKE_mask_point_normal(MaskSpline *spline, MaskSplinePoint *point, float u, float n[2])
745 {
746         MaskSplinePoint *points_array = BKE_mask_spline_point_array_from_point(spline, point);
747
748         BezTriple *bezt = &point->bezt, *bezt_next;
749         float q0[2], q1[2], q2[2], r0[2], r1[2], vec[2];
750
751         bezt_next = mask_spline_point_next_bezt(spline, points_array, point);
752
753         if (!bezt_next) {
754                 BKE_mask_point_handle(point, vec);
755
756                 sub_v2_v2v2(n, vec, bezt->vec[1]);
757                 normalize_v2(n);
758                 return;
759         }
760
761         interp_v2_v2v2(q0, bezt->vec[1], bezt->vec[2], u);
762         interp_v2_v2v2(q1, bezt->vec[2], bezt_next->vec[0], u);
763         interp_v2_v2v2(q2, bezt_next->vec[0], bezt_next->vec[1], u);
764
765         interp_v2_v2v2(r0, q0, q1, u);
766         interp_v2_v2v2(r1, q1, q2, u);
767
768         sub_v2_v2v2(vec, r1, r0);
769
770         n[0] = -vec[1];
771         n[1] =  vec[0];
772
773         normalize_v2(n);
774 }
775
776 static float mask_point_interp_weight(BezTriple *bezt, BezTriple *bezt_next, const float u)
777 {
778         return (bezt->weight * (1.0f - u)) + (bezt_next->weight * u);
779 }
780
781 float BKE_mask_point_weight_scalar(MaskSpline *spline, MaskSplinePoint *point, const float u)
782 {
783         MaskSplinePoint *points_array = BKE_mask_spline_point_array_from_point(spline, point);
784         BezTriple *bezt = &point->bezt, *bezt_next;
785
786         bezt_next = mask_spline_point_next_bezt(spline, points_array, point);
787
788         if (!bezt_next) {
789                 return bezt->weight;
790         }
791         else if (u <= 0.0) {
792                 return bezt->weight;
793         }
794         else if (u >= 1.0f) {
795                 return bezt_next->weight;
796         }
797         else {
798                 return mask_point_interp_weight(bezt, bezt_next, u);
799         }
800 }
801
802 float BKE_mask_point_weight(MaskSpline *spline, MaskSplinePoint *point, const float u)
803 {
804         MaskSplinePoint *points_array = BKE_mask_spline_point_array_from_point(spline, point);
805         BezTriple *bezt = &point->bezt, *bezt_next;
806
807         bezt_next = mask_spline_point_next_bezt(spline, points_array, point);
808
809         if (!bezt_next) {
810                 return bezt->weight;
811         }
812         else if (u <= 0.0) {
813                 return bezt->weight;
814         }
815         else if (u >= 1.0f) {
816                 return bezt_next->weight;
817         }
818         else {
819                 float cur_u = 0.0f, cur_w = 0.0f, next_u = 0.0f, next_w = 0.0f, fac; /* Quite warnings */
820                 int i;
821
822                 for (i = 0; i < point->tot_uw + 1; i++) {
823
824                         if (i == 0) {
825                                 cur_u = 0.0f;
826                                 cur_w = 1.0f; /* mask_point_interp_weight will scale it */
827                         }
828                         else {
829                                 cur_u = point->uw[i - 1].u;
830                                 cur_w = point->uw[i - 1].w;
831                         }
832
833                         if (i == point->tot_uw) {
834                                 next_u = 1.0f;
835                                 next_w = 1.0f; /* mask_point_interp_weight will scale it */
836                         }
837                         else {
838                                 next_u = point->uw[i].u;
839                                 next_w = point->uw[i].w;
840                         }
841
842                         if (u >= cur_u && u <= next_u) {
843                                 break;
844                         }
845                 }
846
847                 fac = (u - cur_u) / (next_u - cur_u);
848
849                 cur_w  *= mask_point_interp_weight(bezt, bezt_next, cur_u);
850                 next_w *= mask_point_interp_weight(bezt, bezt_next, next_u);
851
852                 if (spline->weight_interp == MASK_SPLINE_INTERP_EASE) {
853                         return cur_w + (next_w - cur_w) * (3.0f * fac * fac - 2.0f * fac * fac * fac);
854                 }
855                 else {
856                         return (1.0f - fac) * cur_w + fac * next_w;
857                 }
858         }
859 }
860
861 MaskSplinePointUW *BKE_mask_point_sort_uw(MaskSplinePoint *point, MaskSplinePointUW *uw)
862 {
863         if (point->tot_uw > 1) {
864                 int idx = uw - point->uw;
865
866                 if (idx > 0 && point->uw[idx - 1].u > uw->u) {
867                         while (idx > 0 && point->uw[idx - 1].u > point->uw[idx].u) {
868                                 SWAP(MaskSplinePointUW, point->uw[idx - 1], point->uw[idx]);
869                                 idx--;
870                         }
871                 }
872
873                 if (idx < point->tot_uw - 1 && point->uw[idx + 1].u < uw->u) {
874                         while (idx < point->tot_uw - 1 && point->uw[idx + 1].u < point->uw[idx].u) {
875                                 SWAP(MaskSplinePointUW, point->uw[idx + 1], point->uw[idx]);
876                                 idx++;
877                         }
878                 }
879
880                 return &point->uw[idx];
881         }
882
883         return uw;
884 }
885
886 void BKE_mask_point_add_uw(MaskSplinePoint *point, float u, float w)
887 {
888         if (!point->uw)
889                 point->uw = MEM_callocN(sizeof(*point->uw), "mask point uw");
890         else
891                 point->uw = MEM_reallocN(point->uw, (point->tot_uw + 1) * sizeof(*point->uw));
892
893         point->uw[point->tot_uw].u = u;
894         point->uw[point->tot_uw].w = w;
895
896         point->tot_uw++;
897
898         BKE_mask_point_sort_uw(point, &point->uw[point->tot_uw - 1]);
899 }
900
901 void BKE_mask_point_select_set(MaskSplinePoint *point, const short do_select)
902 {
903         int i;
904
905         if (do_select) {
906                 MASKPOINT_SEL_ALL(point);
907         }
908         else {
909                 MASKPOINT_DESEL_ALL(point);
910         }
911
912         for (i = 0; i < point->tot_uw; i++) {
913                 if (do_select) {
914                         point->uw[i].flag |= SELECT;
915                 }
916                 else {
917                         point->uw[i].flag &= ~SELECT;
918                 }
919         }
920 }
921
922 void BKE_mask_point_select_set_handle(MaskSplinePoint *point, const short do_select)
923 {
924         if (do_select) {
925                 MASKPOINT_SEL_HANDLE(point);
926         }
927         else {
928                 MASKPOINT_DESEL_HANDLE(point);
929         }
930 }
931
932 /* only mask block itself */
933 static Mask *mask_alloc(const char *name)
934 {
935         Mask *mask;
936
937         mask = BKE_libblock_alloc(&G.main->mask, ID_MSK, name);
938
939         return mask;
940 }
941
942 Mask *BKE_mask_new(const char *name)
943 {
944         Mask *mask;
945         char mask_name[MAX_ID_NAME - 2];
946
947         if (name && name[0])
948                 BLI_strncpy(mask_name, name, sizeof(mask_name));
949         else
950                 strcpy(mask_name, "Mask");
951
952         mask = mask_alloc(mask_name);
953
954         /* arbitrary defaults */
955         mask->sfra = 1;
956         mask->efra = 100;
957
958         return mask;
959 }
960
961 void BKE_mask_point_free(MaskSplinePoint *point)
962 {
963         if (point->uw)
964                 MEM_freeN(point->uw);
965 }
966
967 void BKE_mask_spline_free(MaskSpline *spline)
968 {
969         int i = 0;
970
971         for (i = 0; i < spline->tot_point; i++) {
972                 MaskSplinePoint *point;
973                 point = &spline->points[i];
974                 BKE_mask_point_free(point);
975
976                 if (spline->points_deform) {
977                         point = &spline->points_deform[i];
978                         BKE_mask_point_free(point);
979                 }
980         }
981
982         MEM_freeN(spline->points);
983
984         if (spline->points_deform) {
985                 MEM_freeN(spline->points_deform);
986         }
987
988         MEM_freeN(spline);
989 }
990
991 MaskSpline *BKE_mask_spline_copy(MaskSpline *spline)
992 {
993         MaskSpline *nspline = MEM_callocN(sizeof(MaskSpline), "new spline");
994         int i;
995
996         *nspline = *spline;
997
998         nspline->points_deform = NULL;
999         nspline->points = MEM_dupallocN(nspline->points);
1000
1001         for (i = 0; i < nspline->tot_point; i++) {
1002                 MaskSplinePoint *point = &nspline->points[i];
1003
1004                 if (point->uw)
1005                         point->uw = MEM_dupallocN(point->uw);
1006         }
1007
1008         return nspline;
1009 }
1010
1011 /* note: does NOT add to the list */
1012 MaskLayerShape *BKE_mask_layer_shape_alloc(MaskLayer *masklay, const int frame)
1013 {
1014         MaskLayerShape *masklay_shape;
1015         int tot_vert = BKE_mask_layer_shape_totvert(masklay);
1016
1017         masklay_shape = MEM_mallocN(sizeof(MaskLayerShape), __func__);
1018         masklay_shape->frame = frame;
1019         masklay_shape->tot_vert = tot_vert;
1020         masklay_shape->data = MEM_mallocN(tot_vert * sizeof(float) * MASK_OBJECT_SHAPE_ELEM_SIZE, __func__);
1021
1022         return masklay_shape;
1023 }
1024
1025 void BKE_mask_layer_shape_free(MaskLayerShape *masklay_shape)
1026 {
1027         MEM_freeN(masklay_shape->data);
1028
1029         MEM_freeN(masklay_shape);
1030 }
1031
1032 void BKE_mask_layer_free(MaskLayer *masklay)
1033 {
1034         MaskSpline *spline;
1035         MaskLayerShape *masklay_shape;
1036
1037         /* free splines */
1038         spline = masklay->splines.first;
1039         while (spline) {
1040                 MaskSpline *next_spline = spline->next;
1041
1042                 BLI_remlink(&masklay->splines, spline);
1043                 BKE_mask_spline_free(spline);
1044
1045                 spline = next_spline;
1046         }
1047
1048         /* free animation data */
1049         masklay_shape = masklay->splines_shapes.first;
1050         while (masklay_shape) {
1051                 MaskLayerShape *next_masklay_shape = masklay_shape->next;
1052
1053                 BLI_remlink(&masklay->splines_shapes, masklay_shape);
1054                 BKE_mask_layer_shape_free(masklay_shape);
1055
1056                 masklay_shape = next_masklay_shape;
1057         }
1058
1059         MEM_freeN(masklay);
1060 }
1061
1062 void BKE_mask_free(Mask *mask)
1063 {
1064         MaskLayer *masklay = mask->masklayers.first;
1065
1066         while (masklay) {
1067                 MaskLayer *next_masklay = masklay->next;
1068
1069                 BLI_remlink(&mask->masklayers, masklay);
1070                 BKE_mask_layer_free(masklay);
1071
1072                 masklay = next_masklay;
1073         }
1074 }
1075
1076 void BKE_mask_unlink(Main *bmain, Mask *mask)
1077 {
1078         bScreen *scr;
1079         ScrArea *area;
1080         SpaceLink *sl;
1081
1082         for (scr = bmain->screen.first; scr; scr = scr->id.next) {
1083                 for (area = scr->areabase.first; area; area = area->next) {
1084                         for (sl = area->spacedata.first; sl; sl = sl->next) {
1085                                 if (sl->spacetype == SPACE_CLIP) {
1086                                         SpaceClip *sc = (SpaceClip *) sl;
1087
1088                                         if (sc->mask == mask)
1089                                                 sc->mask = NULL;
1090                                 }
1091                         }
1092                 }
1093         }
1094
1095         mask->id.us = 0;
1096 }
1097
1098 void BKE_mask_coord_from_movieclip(MovieClip *clip, MovieClipUser *user, float r_co[2], const float co[2])
1099 {
1100         int width, height;
1101
1102         /* scaling for the clip */
1103         BKE_movieclip_get_size(clip, user, &width, &height);
1104
1105         if (width == height) {
1106                 r_co[0] = co[0];
1107                 r_co[1] = co[1];
1108         }
1109         else if (width < height) {
1110                 r_co[0] = ((co[0] - 0.5f) * ((float)width / (float)height)) + 0.5f;
1111                 r_co[1] = co[1];
1112         }
1113         else { /* (width > height) */
1114                 r_co[0] = co[0];
1115                 r_co[1] = ((co[1] - 0.5f) * ((float)height / (float)width)) + 0.5f;
1116         }
1117 }
1118
1119 /* as above but divide */
1120 void BKE_mask_coord_to_movieclip(MovieClip *clip, MovieClipUser *user, float r_co[2], const float co[2])
1121 {
1122         int width, height;
1123
1124         /* scaling for the clip */
1125         BKE_movieclip_get_size(clip, user, &width, &height);
1126
1127         if (width == height) {
1128                 r_co[0] = co[0];
1129                 r_co[1] = co[1];
1130         }
1131         else if (width < height) {
1132                 r_co[0] = ((co[0] - 0.5f) / ((float)width / (float)height)) + 0.5f;
1133                 r_co[1] = co[1];
1134         }
1135         else { /* (width > height) */
1136                 r_co[0] = co[0];
1137                 r_co[1] = ((co[1] - 0.5f) / ((float)height / (float)width)) + 0.5f;
1138         }
1139 }
1140
1141 static int BKE_mask_evaluate_parent(MaskParent *parent, float ctime, float r_co[2])
1142 {
1143         if (!parent)
1144                 return FALSE;
1145
1146         if (parent->id_type == ID_MC) {
1147                 if (parent->id) {
1148                         MovieClip *clip = (MovieClip *) parent->id;
1149                         MovieTracking *tracking = (MovieTracking *) &clip->tracking;
1150                         MovieTrackingObject *ob = BKE_tracking_named_object(tracking, parent->parent);
1151
1152                         if (ob) {
1153                                 MovieTrackingTrack *track = BKE_tracking_named_track(tracking, ob, parent->sub_parent);
1154
1155                                 MovieClipUser user = {0};
1156                                 user.framenr = ctime;
1157
1158                                 if (track) {
1159                                         MovieTrackingMarker *marker = BKE_tracking_get_marker(track, ctime);
1160                                         float marker_pos_ofs[2];
1161                                         add_v2_v2v2(marker_pos_ofs, marker->pos, track->offset);
1162                                         BKE_mask_coord_from_movieclip(clip, &user, r_co, marker_pos_ofs);
1163
1164                                         return TRUE;
1165                                 }
1166                         }
1167                 }
1168         }
1169
1170         return FALSE;
1171 }
1172
1173 int BKE_mask_evaluate_parent_delta(MaskParent *parent, float ctime, float r_delta[2])
1174 {
1175         float parent_co[2];
1176
1177         if (BKE_mask_evaluate_parent(parent, ctime, parent_co)) {
1178                 sub_v2_v2v2(r_delta, parent_co, parent->parent_orig);
1179                 return TRUE;
1180         }
1181         else {
1182                 return FALSE;
1183         }
1184 }
1185
1186 static void mask_calc_point_handle(MaskSplinePoint *point, MaskSplinePoint *point_prev, MaskSplinePoint *point_next)
1187 {
1188         BezTriple *bezt = &point->bezt;
1189         BezTriple *bezt_prev = NULL, *bezt_next = NULL;
1190         //int handle_type = bezt->h1;
1191
1192         if (point_prev)
1193                 bezt_prev = &point_prev->bezt;
1194
1195         if (point_next)
1196                 bezt_next = &point_next->bezt;
1197
1198 #if 1
1199         if (bezt_prev || bezt_next) {
1200                 BKE_nurb_handle_calc(bezt, bezt_prev, bezt_next, 0);
1201         }
1202 #else
1203         if (handle_type == HD_VECT) {
1204                 BKE_nurb_handle_calc(bezt, bezt_prev, bezt_next, 0);
1205         }
1206         else if (handle_type == HD_AUTO) {
1207                 BKE_nurb_handle_calc(bezt, bezt_prev, bezt_next, 0);
1208         }
1209         else if (handle_type == HD_ALIGN) {
1210                 float v1[3], v2[3];
1211                 float vec[3], h[3];
1212
1213                 sub_v3_v3v3(v1, bezt->vec[0], bezt->vec[1]);
1214                 sub_v3_v3v3(v2, bezt->vec[2], bezt->vec[1]);
1215                 add_v3_v3v3(vec, v1, v2);
1216
1217                 if (len_v3(vec) > 1e-3) {
1218                         h[0] = vec[1];
1219                         h[1] = -vec[0];
1220                         h[2] = 0.0f;
1221                 }
1222                 else {
1223                         copy_v3_v3(h, v1);
1224                 }
1225
1226                 add_v3_v3v3(bezt->vec[0], bezt->vec[1], h);
1227                 sub_v3_v3v3(bezt->vec[2], bezt->vec[1], h);
1228         }
1229 #endif
1230 }
1231
1232 void BKE_mask_get_handle_point_adjacent(MaskSpline *spline, MaskSplinePoint *point,
1233                                         MaskSplinePoint **r_point_prev, MaskSplinePoint **r_point_next)
1234 {
1235         /* TODO, could avoid calling this at such low level */
1236         MaskSplinePoint *points_array = BKE_mask_spline_point_array_from_point(spline, point);
1237
1238         *r_point_prev = mask_spline_point_prev(spline, points_array, point);
1239         *r_point_next = mask_spline_point_next(spline, points_array, point);
1240 }
1241
1242 /* calculates the tanget of a point by its previous and next
1243  * (ignoring handles - as if its a poly line) */
1244 void BKE_mask_calc_tangent_polyline(MaskSpline *spline, MaskSplinePoint *point, float t[2])
1245 {
1246         float tvec_a[2], tvec_b[2];
1247
1248         MaskSplinePoint *point_prev, *point_next;
1249
1250         BKE_mask_get_handle_point_adjacent(spline, point,
1251                                            &point_prev, &point_next);
1252
1253         if (point_prev) {
1254                 sub_v2_v2v2(tvec_a, point->bezt.vec[1], point_prev->bezt.vec[1]);
1255                 normalize_v2(tvec_a);
1256         }
1257         else {
1258                 zero_v2(tvec_a);
1259         }
1260
1261         if (point_next) {
1262                 sub_v2_v2v2(tvec_b, point_next->bezt.vec[1], point->bezt.vec[1]);
1263                 normalize_v2(tvec_b);
1264         }
1265         else {
1266                 zero_v2(tvec_b);
1267         }
1268
1269         add_v2_v2v2(t, tvec_a, tvec_b);
1270         normalize_v2(t);
1271 }
1272
1273 void BKE_mask_calc_handle_point(MaskSpline *spline, MaskSplinePoint *point)
1274 {
1275         MaskSplinePoint *point_prev, *point_next;
1276
1277         BKE_mask_get_handle_point_adjacent(spline, point,
1278                                            &point_prev, &point_next);
1279
1280         mask_calc_point_handle(point, point_prev, point_next);
1281 }
1282
1283 static void enforce_dist_v2_v2fl(float v1[2], const float v2[2], const float dist)
1284 {
1285         if (!equals_v2v2(v2, v1)) {
1286                 float nor[2];
1287
1288                 sub_v2_v2v2(nor, v1, v2);
1289                 normalize_v2(nor);
1290                 madd_v2_v2v2fl(v1, v2, nor, dist);
1291         }
1292 }
1293
1294 void BKE_mask_calc_handle_adjacent_interp(MaskSpline *spline, MaskSplinePoint *point, const float u)
1295 {
1296         /* TODO! - make this interpolate between siblings - not always midpoint! */
1297         int length_tot = 0;
1298         float length_average = 0.0f;
1299         float weight_average = 0.0f;
1300
1301
1302         MaskSplinePoint *point_prev, *point_next;
1303
1304         BLI_assert(u >= 0.0f && u <= 1.0f);
1305
1306         BKE_mask_get_handle_point_adjacent(spline, point,
1307                                            &point_prev, &point_next);
1308
1309         if (point_prev && point_next) {
1310                 length_average = ((len_v2v2(point_prev->bezt.vec[0], point_prev->bezt.vec[1]) * (1.0f - u)) +
1311                                   (len_v2v2(point_next->bezt.vec[2], point_next->bezt.vec[1]) * u));
1312
1313                 weight_average = (point_prev->bezt.weight * (1.0f - u) +
1314                                   point_next->bezt.weight * u);
1315                 length_tot = 1;
1316         }
1317         else {
1318                 if (point_prev) {
1319                         length_average += len_v2v2(point_prev->bezt.vec[0], point_prev->bezt.vec[1]);
1320                         weight_average += point_prev->bezt.weight;
1321                         length_tot++;
1322                 }
1323
1324                 if (point_next) {
1325                         length_average += len_v2v2(point_next->bezt.vec[2], point_next->bezt.vec[1]);
1326                         weight_average += point_next->bezt.weight;
1327                         length_tot++;
1328                 }
1329         }
1330
1331         if (length_tot) {
1332                 length_average /= (float)length_tot;
1333                 weight_average /= (float)length_tot;
1334
1335                 enforce_dist_v2_v2fl(point->bezt.vec[0], point->bezt.vec[1], length_average);
1336                 enforce_dist_v2_v2fl(point->bezt.vec[2], point->bezt.vec[1], length_average);
1337                 point->bezt.weight = weight_average;
1338         }
1339 }
1340
1341
1342 /**
1343  * \brief Resets auto handles even for non-auto bezier points
1344  *
1345  * Useful for giving sane defaults.
1346  */
1347 void BKE_mask_calc_handle_point_auto(MaskSpline *spline, MaskSplinePoint *point,
1348                                      const short do_recalc_length)
1349 {
1350         MaskSplinePoint *point_prev, *point_next;
1351         const char h_back[2] = {point->bezt.h1, point->bezt.h2};
1352         const float length_average = (do_recalc_length) ? 0.0f /* dummy value */ :
1353                                      (len_v3v3(point->bezt.vec[0], point->bezt.vec[1]) +
1354                                       len_v3v3(point->bezt.vec[1], point->bezt.vec[2])) / 2.0f;
1355
1356         BKE_mask_get_handle_point_adjacent(spline, point,
1357                                            &point_prev, &point_next);
1358
1359         point->bezt.h1 = HD_AUTO;
1360         point->bezt.h2 = HD_AUTO;
1361         mask_calc_point_handle(point, point_prev, point_next);
1362
1363         point->bezt.h1 = h_back[0];
1364         point->bezt.h2 = h_back[1];
1365
1366         /* preserve length by applying it back */
1367         if (do_recalc_length == FALSE) {
1368                 enforce_dist_v2_v2fl(point->bezt.vec[0], point->bezt.vec[1], length_average);
1369                 enforce_dist_v2_v2fl(point->bezt.vec[2], point->bezt.vec[1], length_average);
1370         }
1371 }
1372
1373 void BKE_mask_layer_calc_handles(MaskLayer *masklay)
1374 {
1375         MaskSpline *spline;
1376         for (spline = masklay->splines.first; spline; spline = spline->next) {
1377                 int i;
1378                 for (i = 0; i < spline->tot_point; i++) {
1379                         BKE_mask_calc_handle_point(spline, &spline->points[i]);
1380                 }
1381         }
1382 }
1383
1384 void BKE_mask_layer_calc_handles_deform(MaskLayer *masklay)
1385 {
1386         MaskSpline *spline;
1387         for (spline = masklay->splines.first; spline; spline = spline->next) {
1388                 int i;
1389                 for (i = 0; i < spline->tot_point; i++) {
1390                         BKE_mask_calc_handle_point(spline, &spline->points_deform[i]);
1391                 }
1392         }
1393 }
1394
1395 void BKE_mask_calc_handles(Mask *mask)
1396 {
1397         MaskLayer *masklay;
1398         for (masklay = mask->masklayers.first; masklay; masklay = masklay->next) {
1399                 BKE_mask_layer_calc_handles(masklay);
1400         }
1401 }
1402
1403 void BKE_mask_update_deform(Mask *mask)
1404 {
1405         MaskLayer *masklay;
1406
1407         for (masklay = mask->masklayers.first; masklay; masklay = masklay->next) {
1408                 MaskSpline *spline;
1409
1410                 for (spline = masklay->splines.first; spline; spline = spline->next) {
1411                         int i;
1412
1413                         for (i = 0; i < spline->tot_point; i++) {
1414                                 const int i_prev = (i - 1) % spline->tot_point;
1415                                 const int i_next = (i + 1) % spline->tot_point;
1416
1417                                 BezTriple *bezt_prev = &spline->points[i_prev].bezt;
1418                                 BezTriple *bezt      = &spline->points[i].bezt;
1419                                 BezTriple *bezt_next = &spline->points[i_next].bezt;
1420
1421                                 BezTriple *bezt_def_prev = &spline->points_deform[i_prev].bezt;
1422                                 BezTriple *bezt_def      = &spline->points_deform[i].bezt;
1423                                 BezTriple *bezt_def_next = &spline->points_deform[i_next].bezt;
1424
1425                                 float w_src[4];
1426                                 int j;
1427
1428                                 for (j = 0; j <= 2; j += 2) { /* (0, 2) */
1429                                         printf("--- %d %d, %d, %d\n", i, j, i_prev, i_next);
1430                                         barycentric_weights_v2(bezt_prev->vec[1], bezt->vec[1], bezt_next->vec[1],
1431                                                                bezt->vec[j], w_src);
1432                                         interp_v3_v3v3v3(bezt_def->vec[j],
1433                                                          bezt_def_prev->vec[1], bezt_def->vec[1], bezt_def_next->vec[1], w_src);
1434                                 }
1435                         }
1436                 }
1437         }
1438 }
1439
1440 void BKE_mask_spline_ensure_deform(MaskSpline *spline)
1441 {
1442         int allocated_points = (MEM_allocN_len(spline->points_deform) / sizeof(*spline->points_deform));
1443         // printf("SPLINE ALLOC %p %d\n", spline->points_deform, allocated_points);
1444
1445         if (spline->points_deform == NULL || allocated_points != spline->tot_point) {
1446                 printf("alloc new deform spline\n");
1447
1448                 if (spline->points_deform) {
1449                         int i;
1450
1451                         for (i = 0; i < allocated_points; i++) {
1452                                 MaskSplinePoint *point = &spline->points_deform[i];
1453                                 BKE_mask_point_free(point);
1454                         }
1455
1456                         MEM_freeN(spline->points_deform);
1457                 }
1458
1459                 spline->points_deform = MEM_callocN(sizeof(*spline->points_deform) * spline->tot_point, __func__);
1460         }
1461         else {
1462                 // printf("alloc spline done\n");
1463         }
1464 }
1465
1466 void BKE_mask_evaluate(Mask *mask, float ctime, const int do_newframe)
1467 {
1468         MaskLayer *masklay;
1469
1470         for (masklay = mask->masklayers.first; masklay; masklay = masklay->next) {
1471
1472                 /* animation if available */
1473                 if (do_newframe) {
1474                         MaskLayerShape *masklay_shape_a;
1475                         MaskLayerShape *masklay_shape_b;
1476                         int found;
1477
1478                         if ((found = BKE_mask_layer_shape_find_frame_range(masklay, (int)ctime,
1479                                                                            &masklay_shape_a, &masklay_shape_b)))
1480                         {
1481                                 if (found == 1) {
1482 #if 0
1483                                         printf("%s: exact %d %d (%d)\n", __func__, (int)ctime, BLI_countlist(&masklay->splines_shapes),
1484                                                masklay_shape_a->frame);
1485 #endif
1486
1487                                         BKE_mask_layer_shape_to_mask(masklay, masklay_shape_a);
1488                                 }
1489                                 else if (found == 2) {
1490                                         float w = masklay_shape_b->frame - masklay_shape_a->frame;
1491 #if 0
1492                                         printf("%s: tween %d %d (%d %d)\n", __func__, (int)ctime, BLI_countlist(&masklay->splines_shapes),
1493                                                masklay_shape_a->frame, masklay_shape_b->frame);
1494 #endif
1495                                         BKE_mask_layer_shape_to_mask_interp(masklay, masklay_shape_a, masklay_shape_b,
1496                                                                             (ctime - masklay_shape_a->frame) / w);
1497                                 }
1498                                 else {
1499                                         /* always fail, should never happen */
1500                                         BLI_assert(found == 2);
1501                                 }
1502                         }
1503                 }
1504                 /* animation done... */
1505         }
1506
1507         BKE_mask_calc_handles(mask);
1508
1509
1510         for (masklay = mask->masklayers.first; masklay; masklay = masklay->next) {
1511                 MaskSpline *spline;
1512
1513                 for (spline = masklay->splines.first; spline; spline = spline->next) {
1514                         int i;
1515                         int has_auto = FALSE;
1516
1517                         BKE_mask_spline_ensure_deform(spline);
1518
1519                         for (i = 0; i < spline->tot_point; i++) {
1520                                 MaskSplinePoint *point = &spline->points[i];
1521                                 MaskSplinePoint *point_deform = &spline->points_deform[i];
1522                                 float delta[2];
1523
1524                                 BKE_mask_point_free(point_deform);
1525
1526                                 *point_deform = *point;
1527                                 point_deform->uw = point->uw ? MEM_dupallocN(point->uw) : NULL;
1528
1529                                 if (BKE_mask_evaluate_parent_delta(&point->parent, ctime, delta)) {
1530                                         add_v2_v2(point_deform->bezt.vec[0], delta);
1531                                         add_v2_v2(point_deform->bezt.vec[1], delta);
1532                                         add_v2_v2(point_deform->bezt.vec[2], delta);
1533                                 }
1534
1535                                 if (point->bezt.h1 == HD_AUTO) {
1536                                         has_auto = TRUE;
1537                                 }
1538                         }
1539
1540                         /* if the spline has auto handles, these need to be recalculated after deformation */
1541                         if (has_auto) {
1542                                 for (i = 0; i < spline->tot_point; i++) {
1543                                         MaskSplinePoint *point_deform = &spline->points_deform[i];
1544                                         if (point_deform->bezt.h1 == HD_AUTO) {
1545                                                 BKE_mask_calc_handle_point(spline, point_deform);
1546                                         }
1547                                 }
1548                         }
1549                         /* end extra calc handles loop */
1550                 }
1551         }
1552 }
1553
1554 /* the purpose of this function is to ensure spline->points_deform is never out of date.
1555  * for now re-evaluate all. eventually this might work differently */
1556 void BKE_mask_update_display(Mask *mask, float ctime)
1557 {
1558 #if 0
1559         MaskLayer *masklay;
1560
1561         for (masklay = mask->masklayers.first; masklay; masklay = masklay->next) {
1562                 MaskSpline *spline;
1563
1564                 for (spline = masklay->splines.first; spline; spline = spline->next) {
1565                         if (spline->points_deform) {
1566                                 int i = 0;
1567
1568                                 for (i = 0; i < spline->tot_point; i++) {
1569                                         MaskSplinePoint *point;
1570
1571                                         if (spline->points_deform) {
1572                                                 point = &spline->points_deform[i];
1573                                                 BKE_mask_point_free(point);
1574                                         }
1575                                 }
1576                                 if (spline->points_deform) {
1577                                         MEM_freeN(spline->points_deform);
1578                                 }
1579
1580                                 spline->points_deform = NULL;
1581                         }
1582                 }
1583         }
1584 #endif
1585
1586         BKE_mask_evaluate(mask, ctime, FALSE);
1587 }
1588
1589 void BKE_mask_evaluate_all_masks(Main *bmain, float ctime, const int do_newframe)
1590 {
1591         Mask *mask;
1592
1593         for (mask = bmain->mask.first; mask; mask = mask->id.next) {
1594                 BKE_mask_evaluate(mask, ctime, do_newframe);
1595         }
1596 }
1597
1598 void BKE_mask_update_scene(Main *bmain, Scene *scene, const int do_newframe)
1599 {
1600         Mask *mask;
1601
1602         for (mask = bmain->mask.first; mask; mask = mask->id.next) {
1603                 if (mask->id.flag & LIB_ID_RECALC) {
1604                         BKE_mask_evaluate_all_masks(bmain, CFRA, do_newframe);
1605                 }
1606         }
1607 }
1608
1609 void BKE_mask_parent_init(MaskParent *parent)
1610 {
1611         parent->id_type = ID_MC;
1612 }
1613
1614
1615 /* *** own animation/shapekey implimentation ***
1616  * BKE_mask_layer_shape_XXX */
1617
1618 int BKE_mask_layer_shape_totvert(MaskLayer *masklay)
1619 {
1620         int tot = 0;
1621         MaskSpline *spline;
1622
1623         for (spline = masklay->splines.first; spline; spline = spline->next) {
1624                 tot += spline->tot_point;
1625         }
1626
1627         return tot;
1628 }
1629
1630 static void mask_layer_shape_from_mask_point(BezTriple *bezt, float fp[MASK_OBJECT_SHAPE_ELEM_SIZE])
1631 {
1632         copy_v2_v2(&fp[0], bezt->vec[0]);
1633         copy_v2_v2(&fp[2], bezt->vec[1]);
1634         copy_v2_v2(&fp[4], bezt->vec[2]);
1635         fp[6] = bezt->weight;
1636         fp[7] = bezt->radius;
1637 }
1638
1639 static void mask_layer_shape_to_mask_point(BezTriple *bezt, float fp[MASK_OBJECT_SHAPE_ELEM_SIZE])
1640 {
1641         copy_v2_v2(bezt->vec[0], &fp[0]);
1642         copy_v2_v2(bezt->vec[1], &fp[2]);
1643         copy_v2_v2(bezt->vec[2], &fp[4]);
1644         bezt->weight = fp[6];
1645         bezt->radius = fp[7];
1646 }
1647
1648 /* these functions match. copy is swapped */
1649 void BKE_mask_layer_shape_from_mask(MaskLayer *masklay, MaskLayerShape *masklay_shape)
1650 {
1651         int tot = BKE_mask_layer_shape_totvert(masklay);
1652
1653         if (masklay_shape->tot_vert == tot) {
1654                 float *fp = masklay_shape->data;
1655
1656                 MaskSpline *spline;
1657                 for (spline = masklay->splines.first; spline; spline = spline->next) {
1658                         int i;
1659                         for (i = 0; i < spline->tot_point; i++) {
1660                                 mask_layer_shape_from_mask_point(&spline->points[i].bezt, fp);
1661                                 fp += MASK_OBJECT_SHAPE_ELEM_SIZE;
1662                         }
1663                 }
1664         }
1665         else {
1666                 printf("%s: vert mismatch %d != %d (frame %d)\n",
1667                        __func__, masklay_shape->tot_vert, tot, masklay_shape->frame);
1668         }
1669 }
1670
1671 void BKE_mask_layer_shape_to_mask(MaskLayer *masklay, MaskLayerShape *masklay_shape)
1672 {
1673         int tot = BKE_mask_layer_shape_totvert(masklay);
1674
1675         if (masklay_shape->tot_vert == tot) {
1676                 float *fp = masklay_shape->data;
1677
1678                 MaskSpline *spline;
1679                 for (spline = masklay->splines.first; spline; spline = spline->next) {
1680                         int i;
1681                         for (i = 0; i < spline->tot_point; i++) {
1682                                 mask_layer_shape_to_mask_point(&spline->points[i].bezt, fp);
1683                                 fp += MASK_OBJECT_SHAPE_ELEM_SIZE;
1684                         }
1685                 }
1686         }
1687         else {
1688                 printf("%s: vert mismatch %d != %d (frame %d)\n",
1689                        __func__, masklay_shape->tot_vert, tot, masklay_shape->frame);
1690         }
1691 }
1692
1693 BLI_INLINE void interp_v2_v2v2_flfl(float target[2], const float a[2], const float b[2],
1694                                     const float t, const float s)
1695 {
1696         target[0] = s * a[0] + t * b[0];
1697         target[1] = s * a[1] + t * b[1];
1698 }
1699
1700 /* linear interpolation only */
1701 void BKE_mask_layer_shape_to_mask_interp(MaskLayer *masklay,
1702                                          MaskLayerShape *masklay_shape_a,
1703                                          MaskLayerShape *masklay_shape_b,
1704                                          const float fac)
1705 {
1706         int tot = BKE_mask_layer_shape_totvert(masklay);
1707         if (masklay_shape_a->tot_vert == tot && masklay_shape_b->tot_vert == tot) {
1708                 float *fp_a = masklay_shape_a->data;
1709                 float *fp_b = masklay_shape_b->data;
1710                 const float ifac = 1.0f - fac;
1711
1712                 MaskSpline *spline;
1713                 for (spline = masklay->splines.first; spline; spline = spline->next) {
1714                         int i;
1715                         for (i = 0; i < spline->tot_point; i++) {
1716                                 BezTriple *bezt = &spline->points[i].bezt;
1717                                 /* *** BKE_mask_layer_shape_from_mask - swapped *** */
1718                                 interp_v2_v2v2_flfl(bezt->vec[0], fp_a, fp_b, fac, ifac); fp_a += 2; fp_b += 2;
1719                                 interp_v2_v2v2_flfl(bezt->vec[1], fp_a, fp_b, fac, ifac); fp_a += 2; fp_b += 2;
1720                                 interp_v2_v2v2_flfl(bezt->vec[2], fp_a, fp_b, fac, ifac); fp_a += 2; fp_b += 2;
1721                                 bezt->weight = (fp_a[0] * ifac) + (fp_b[0] * fac);
1722                                 bezt->radius = (fp_a[1] * ifac) + (fp_b[1] * fac); fp_a += 2; fp_b += 2;
1723                         }
1724                 }
1725         }
1726         else {
1727                 printf("%s: vert mismatch %d != %d != %d (frame %d - %d)\n",
1728                        __func__, masklay_shape_a->tot_vert, masklay_shape_b->tot_vert, tot,
1729                        masklay_shape_a->frame, masklay_shape_b->frame);
1730         }
1731 }
1732
1733 MaskLayerShape *BKE_mask_layer_shape_find_frame(MaskLayer *masklay, const int frame)
1734 {
1735         MaskLayerShape *masklay_shape;
1736
1737         for (masklay_shape = masklay->splines_shapes.first;
1738              masklay_shape;
1739              masklay_shape = masklay_shape->next)
1740         {
1741                 if (frame == masklay_shape->frame) {
1742                         return masklay_shape;
1743                 }
1744                 else if (frame < masklay_shape->frame) {
1745                         break;
1746                 }
1747         }
1748
1749         return NULL;
1750 }
1751
1752 /* when returning 2 - the frame isnt found but before/after frames are */
1753 int BKE_mask_layer_shape_find_frame_range(MaskLayer *masklay, const int frame,
1754                                           MaskLayerShape **r_masklay_shape_a,
1755                                           MaskLayerShape **r_masklay_shape_b)
1756 {
1757         MaskLayerShape *masklay_shape;
1758
1759         for (masklay_shape = masklay->splines_shapes.first;
1760              masklay_shape;
1761              masklay_shape = masklay_shape->next)
1762         {
1763                 if (frame == masklay_shape->frame) {
1764                         *r_masklay_shape_a = masklay_shape;
1765                         *r_masklay_shape_b = NULL;
1766                         return 1;
1767                 }
1768                 else if (frame < masklay_shape->frame) {
1769                         if (masklay_shape->prev) {
1770                                 *r_masklay_shape_a = masklay_shape->prev;
1771                                 *r_masklay_shape_b = masklay_shape;
1772                                 return 2;
1773                         }
1774                         else {
1775                                 *r_masklay_shape_a = masklay_shape;
1776                                 *r_masklay_shape_b = NULL;
1777                                 return 1;
1778                         }
1779                 }
1780         }
1781
1782         *r_masklay_shape_a = NULL;
1783         *r_masklay_shape_b = NULL;
1784
1785         return 0;
1786 }
1787
1788 MaskLayerShape *BKE_mask_layer_shape_varify_frame(MaskLayer *masklay, const int frame)
1789 {
1790         MaskLayerShape *masklay_shape;
1791
1792         masklay_shape = BKE_mask_layer_shape_find_frame(masklay, frame);
1793
1794         if (masklay_shape == NULL) {
1795                 masklay_shape = BKE_mask_layer_shape_alloc(masklay, frame);
1796                 BLI_addtail(&masklay->splines_shapes, masklay_shape);
1797                 BKE_mask_layer_shape_sort(masklay);
1798         }
1799
1800 #if 0
1801         {
1802                 MaskLayerShape *masklay_shape;
1803                 int i = 0;
1804                 for (masklay_shape = masklay->splines_shapes.first;
1805                      masklay_shape;
1806                      masklay_shape = masklay_shape->next)
1807                 {
1808                         printf("mask %d, %d\n", i++, masklay_shape->frame);
1809                 }
1810         }
1811 #endif
1812
1813         return masklay_shape;
1814 }
1815
1816 void BKE_mask_layer_shape_unlink(MaskLayer *masklay, MaskLayerShape *masklay_shape)
1817 {
1818         BLI_remlink(&masklay->splines_shapes, masklay_shape);
1819
1820         BKE_mask_layer_shape_free(masklay_shape);
1821 }
1822
1823 static int mask_layer_shape_sort_cb(void *masklay_shape_a_ptr, void *masklay_shape_b_ptr)
1824 {
1825         MaskLayerShape *masklay_shape_a = (MaskLayerShape *)masklay_shape_a_ptr;
1826         MaskLayerShape *masklay_shape_b = (MaskLayerShape *)masklay_shape_b_ptr;
1827
1828         if      (masklay_shape_a->frame < masklay_shape_b->frame)  return -1;
1829         else if (masklay_shape_a->frame > masklay_shape_b->frame)  return  1;
1830         else                                                       return  0;
1831 }
1832
1833 void BKE_mask_layer_shape_sort(MaskLayer *masklay)
1834 {
1835         BLI_sortlist(&masklay->splines_shapes, mask_layer_shape_sort_cb);
1836 }
1837
1838 int BKE_mask_layer_shape_spline_from_index(MaskLayer *masklay, int index,
1839                                            MaskSpline **r_masklay_shape, int *r_index)
1840 {
1841         MaskSpline *spline;
1842
1843         for (spline = masklay->splines.first; spline; spline = spline->next) {
1844                 if (index < spline->tot_point) {
1845                         *r_masklay_shape = spline;
1846                         *r_index = index;
1847                         return TRUE;
1848                 }
1849                 index -= spline->tot_point;
1850         }
1851
1852         return FALSE;
1853 }
1854
1855 int BKE_mask_layer_shape_spline_to_index(MaskLayer *masklay, MaskSpline *spline)
1856 {
1857         MaskSpline *spline_iter;
1858         int i_abs = 0;
1859         for (spline_iter = masklay->splines.first;
1860              spline_iter && spline_iter != spline;
1861              i_abs += spline_iter->tot_point, spline_iter = spline_iter->next)
1862         {
1863                 /* pass */
1864         }
1865
1866         return i_abs;
1867 }
1868
1869 /* basic 2D interpolation functions, could make more comprehensive later */
1870 static void interp_weights_uv_v2_calc(float r_uv[2], const float pt[2], const float pt_a[2], const float pt_b[2])
1871 {
1872         float pt_on_line[2];
1873         r_uv[0] = closest_to_line_v2(pt_on_line, pt, pt_a, pt_b);
1874         r_uv[1] = (len_v2v2(pt_on_line, pt) / len_v2v2(pt_a, pt_b)) *
1875                   ((line_point_side_v2(pt_a, pt_b, pt) < 0.0f) ? -1.0 : 1.0);  /* this line only sets the sign */
1876 }
1877
1878
1879 static void interp_weights_uv_v2_apply(const float uv[2], float r_pt[2], const float pt_a[2], const float pt_b[2])
1880 {
1881         const float dvec[2] = {pt_b[0] - pt_a[0],
1882                                pt_b[1] - pt_a[1]};
1883
1884         /* u */
1885         madd_v2_v2v2fl(r_pt, pt_a, dvec, uv[0]);
1886
1887         /* v */
1888         r_pt[0] += -dvec[1] * uv[1];
1889         r_pt[1] +=  dvec[0] * uv[1];
1890 }
1891
1892 /* when a now points added - resize all shapekey array  */
1893 void BKE_mask_layer_shape_changed_add(MaskLayer *masklay, int index,
1894                                       int do_init, int do_init_interpolate)
1895 {
1896         MaskLayerShape *masklay_shape;
1897
1898         /* spline index from masklay */
1899         MaskSpline *spline;
1900         int spline_point_index;
1901
1902         if (BKE_mask_layer_shape_spline_from_index(masklay, index,
1903                                                    &spline, &spline_point_index))
1904         {
1905                 /* sanity check */
1906                 /* the point has already been removed in this array so subtract one when comparing with the shapes */
1907                 int tot = BKE_mask_layer_shape_totvert(masklay) - 1;
1908
1909                 /* for interpolation */
1910                 /* TODO - assumes closed curve for now */
1911                 float uv[3][2]; /* 3x 2D handles */
1912                 const int pi_curr =   spline_point_index;
1913                 const int pi_prev = ((spline_point_index - 1) + spline->tot_point) % spline->tot_point;
1914                 const int pi_next =  (spline_point_index + 1)                      % spline->tot_point;
1915
1916                 const int index_offset = index - spline_point_index;
1917                 /* const int pi_curr_abs = index; */
1918                 const int pi_prev_abs = pi_prev + index_offset;
1919                 const int pi_next_abs = pi_next + index_offset;
1920
1921                 int i;
1922                 if (do_init_interpolate) {
1923                         for (i = 0; i < 3; i++) {
1924                                 interp_weights_uv_v2_calc(uv[i],
1925                                                           spline->points[pi_curr].bezt.vec[i],
1926                                                           spline->points[pi_prev].bezt.vec[i],
1927                                                           spline->points[pi_next].bezt.vec[i]);
1928                         }
1929                 }
1930
1931                 for (masklay_shape = masklay->splines_shapes.first;
1932                      masklay_shape;
1933                      masklay_shape = masklay_shape->next)
1934                 {
1935                         if (tot == masklay_shape->tot_vert) {
1936                                 float *data_resized;
1937
1938                                 masklay_shape->tot_vert++;
1939                                 data_resized = MEM_mallocN(masklay_shape->tot_vert * sizeof(float) * MASK_OBJECT_SHAPE_ELEM_SIZE, __func__);
1940                                 if (index > 0) {
1941                                         memcpy(data_resized,
1942                                                masklay_shape->data,
1943                                                index * sizeof(float) * MASK_OBJECT_SHAPE_ELEM_SIZE);
1944                                 }
1945
1946                                 if (index != masklay_shape->tot_vert - 1) {
1947                                         memcpy(&data_resized[(index + 1) * MASK_OBJECT_SHAPE_ELEM_SIZE],
1948                                                masklay_shape->data + (index * MASK_OBJECT_SHAPE_ELEM_SIZE),
1949                                                (masklay_shape->tot_vert - (index + 1)) * sizeof(float) * MASK_OBJECT_SHAPE_ELEM_SIZE);
1950                                 }
1951
1952                                 if (do_init) {
1953                                         float *fp = &data_resized[index * MASK_OBJECT_SHAPE_ELEM_SIZE];
1954
1955                                         mask_layer_shape_from_mask_point(&spline->points[spline_point_index].bezt, fp);
1956
1957                                         if (do_init_interpolate && spline->tot_point > 2) {
1958                                                 for (i = 0; i < 3; i++) {
1959                                                         interp_weights_uv_v2_apply(uv[i],
1960                                                                                    &fp[i * 2],
1961                                                                                    &data_resized[(pi_prev_abs * MASK_OBJECT_SHAPE_ELEM_SIZE) + (i * 2)],
1962                                                                                    &data_resized[(pi_next_abs * MASK_OBJECT_SHAPE_ELEM_SIZE) + (i * 2)]);
1963                                                 }
1964                                         }
1965                                 }
1966                                 else {
1967                                         memset(&data_resized[index * MASK_OBJECT_SHAPE_ELEM_SIZE],
1968                                                0,
1969                                                sizeof(float) * MASK_OBJECT_SHAPE_ELEM_SIZE);
1970                                 }
1971
1972                                 MEM_freeN(masklay_shape->data);
1973                                 masklay_shape->data = data_resized;
1974                         }
1975                         else {
1976                                 printf("%s: vert mismatch %d != %d (frame %d)\n",
1977                                        __func__, masklay_shape->tot_vert, tot, masklay_shape->frame);
1978                         }
1979                 }
1980         }
1981 }
1982
1983
1984 /* move array to account for removed point */
1985 void BKE_mask_layer_shape_changed_remove(MaskLayer *masklay, int index, int count)
1986 {
1987         MaskLayerShape *masklay_shape;
1988
1989         /* the point has already been removed in this array so add one when comparing with the shapes */
1990         int tot = BKE_mask_layer_shape_totvert(masklay);
1991
1992         for (masklay_shape = masklay->splines_shapes.first;
1993              masklay_shape;
1994              masklay_shape = masklay_shape->next)
1995         {
1996                 if (tot == masklay_shape->tot_vert - count) {
1997                         float *data_resized;
1998
1999                         masklay_shape->tot_vert -= count;
2000                         data_resized = MEM_mallocN(masklay_shape->tot_vert * sizeof(float) * MASK_OBJECT_SHAPE_ELEM_SIZE, __func__);
2001                         if (index > 0) {
2002                                 memcpy(data_resized,
2003                                        masklay_shape->data,
2004                                        index * sizeof(float) * MASK_OBJECT_SHAPE_ELEM_SIZE);
2005                         }
2006
2007                         if (index != masklay_shape->tot_vert) {
2008                                 memcpy(&data_resized[index * MASK_OBJECT_SHAPE_ELEM_SIZE],
2009                                        masklay_shape->data + ((index + count) * MASK_OBJECT_SHAPE_ELEM_SIZE),
2010                                        (masklay_shape->tot_vert - index) * sizeof(float) * MASK_OBJECT_SHAPE_ELEM_SIZE);
2011                         }
2012
2013                         MEM_freeN(masklay_shape->data);
2014                         masklay_shape->data = data_resized;
2015                 }
2016                 else {
2017                         printf("%s: vert mismatch %d != %d (frame %d)\n",
2018                                __func__, masklay_shape->tot_vert - count, tot, masklay_shape->frame);
2019                 }
2020         }
2021 }
2022
2023 /* local functions */
2024 static void invert_vn_vn(float *array, const int size)
2025 {
2026         float *arr = array + (size - 1);
2027         int i = size;
2028         while (i--) {
2029                 *(arr) = 1.0f - *(arr);
2030                 arr--;
2031         }
2032 }
2033
2034 static void m_invert_vn_vn(float *array, const float f, const int size)
2035 {
2036         float *arr = array + (size - 1);
2037         int i = size;
2038         while (i--) {
2039                 *(arr) = 1.0f - (*(arr) * f);
2040                 arr--;
2041         }
2042 }
2043
2044 static void clamp_vn_vn_linear(float *array, const int size)
2045 {
2046         float *arr = array + (size - 1);
2047
2048         int i = size;
2049         while (i--) {
2050                 if      (*arr <= 0.0f) *arr = 0.0f;
2051                 else if (*arr >= 1.0f) *arr = 1.0f;
2052                 else *arr = srgb_to_linearrgb(*arr);
2053                 arr--;
2054         }
2055 }
2056
2057 static void clamp_vn_vn(float *array, const int size)
2058 {
2059         float *arr = array + (size - 1);
2060
2061         int i = size;
2062         while (i--) {
2063                 if      (*arr < 0.0f) *arr = 0.0f;
2064                 else if (*arr > 1.0f) *arr = 1.0f;
2065                 arr--;
2066         }
2067 }
2068
2069 int BKE_mask_get_duration(Mask *mask)
2070 {
2071         return MAX2(1, mask->efra - mask->sfra);
2072 }
2073
2074 /* rasterization */
2075 void BKE_mask_rasterize(Mask *mask, int width, int height, float *buffer,
2076                         const short do_aspect_correct, const short do_linear)
2077 {
2078         MaskLayer *masklay;
2079
2080         /* temp blending buffer */
2081         const int buffer_size = width * height;
2082         float *buffer_tmp = MEM_mallocN(sizeof(float) * buffer_size, __func__);
2083
2084         for (masklay = mask->masklayers.first; masklay; masklay = masklay->next) {
2085                 MaskSpline *spline;
2086                 float alpha;
2087
2088                 if (masklay->restrictflag & MASK_RESTRICT_RENDER) {
2089                         continue;
2090                 }
2091
2092                 memset(buffer_tmp, 0, sizeof(float) * buffer_size);
2093
2094                 for (spline = masklay->splines.first; spline; spline = spline->next) {
2095                         float (*diff_points)[2];
2096                         int tot_diff_point;
2097
2098                         float (*diff_feather_points)[2];
2099                         int tot_diff_feather_points;
2100
2101                         diff_points = BKE_mask_spline_differentiate_with_resolution(spline, width, height,
2102                                                                                     &tot_diff_point);
2103
2104                         if (tot_diff_point) {
2105                                 diff_feather_points =
2106                                         BKE_mask_spline_feather_differentiated_points_with_resolution(spline, width, height,
2107                                                                                                       &tot_diff_feather_points);
2108
2109                                 if (do_aspect_correct) {
2110                                         if (width != height) {
2111                                                 float *fp;
2112                                                 float *ffp;
2113                                                 int i;
2114                                                 float asp;
2115
2116                                                 if (width < height) {
2117                                                         fp = &diff_points[0][0];
2118                                                         ffp = tot_diff_feather_points ? &diff_feather_points[0][0] : NULL;
2119                                                         asp = (float)width / (float)height;
2120                                                 }
2121                                                 else {
2122                                                         fp = &diff_points[0][1];
2123                                                         ffp = tot_diff_feather_points ? &diff_feather_points[0][1] : NULL;
2124                                                         asp = (float)height / (float)width;
2125                                                 }
2126
2127                                                 for (i = 0; i < tot_diff_point; i++, fp += 2) {
2128                                                         (*fp) = (((*fp) - 0.5f) / asp) + 0.5f;
2129                                                 }
2130
2131                                                 if (tot_diff_feather_points) {
2132                                                         for (i = 0; i < tot_diff_feather_points; i++, ffp += 2) {
2133                                                                 (*ffp) = (((*ffp) - 0.5f) / asp) + 0.5f;
2134                                                         }
2135                                                 }
2136                                         }
2137                                 }
2138
2139                                 if (tot_diff_point) {
2140                                         PLX_raskterize(diff_points, tot_diff_point,
2141                                                        buffer_tmp, width, height);
2142
2143                                         if (tot_diff_feather_points) {
2144                                                 PLX_raskterize_feather(diff_points, tot_diff_point,
2145                                                                        diff_feather_points, tot_diff_feather_points,
2146                                                                        buffer_tmp, width, height);
2147                                                 MEM_freeN(diff_feather_points);
2148                                         }
2149
2150                                         MEM_freeN(diff_points);
2151                                 }
2152                         }
2153                 }
2154
2155                 /* blend with original */
2156                 if (masklay->blend_flag & MASK_BLENDFLAG_INVERT) {
2157                         /* apply alpha multiply before inverting */
2158                         if (masklay->alpha != 1.0f) {
2159                                 m_invert_vn_vn(buffer_tmp, masklay->alpha, buffer_size);
2160                         }
2161                         else {
2162                                 invert_vn_vn(buffer_tmp, buffer_size);
2163                         }
2164
2165                         alpha = 1.0f;
2166                 }
2167                 else {
2168                         alpha = masklay->alpha;
2169                 }
2170
2171                 switch (masklay->blend) {
2172                         case MASK_BLEND_SUBTRACT:
2173                         {
2174                                 if (alpha == 1.0f) {
2175                                         sub_vn_vn(buffer, buffer_tmp, buffer_size);
2176                                 }
2177                                 else {
2178                                         msub_vn_vn(buffer, buffer_tmp, alpha, buffer_size);
2179                                 }
2180                                 break;
2181                         }
2182                         case MASK_BLEND_ADD:
2183                         default:
2184                         {
2185                                 if (alpha == 1.0f) {
2186                                         add_vn_vn(buffer, buffer_tmp, buffer_size);
2187                                 }
2188                                 else {
2189                                         madd_vn_vn(buffer, buffer_tmp, alpha, buffer_size);
2190                                 }
2191                                 break;
2192                         }
2193                 }
2194
2195                 /* clamp at the end */
2196                 if (do_linear) {
2197                         clamp_vn_vn_linear(buffer, buffer_size);
2198                 }
2199                 else {
2200                         clamp_vn_vn(buffer, buffer_size);
2201                 }
2202         }
2203
2204         MEM_freeN(buffer_tmp);
2205 }