/**
* $Id$
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#ifndef PHY_PROPSH
#define PHY_PROPSH
#include
// Properties of dynamic objects
struct PHY_ShapeProps {
MT_Scalar m_mass; // Total mass
MT_Scalar m_inertia; // Inertia, should be a tensor some time
MT_Scalar m_lin_drag; // Linear drag (air, water) 0 = concrete, 1 = vacuum
MT_Scalar m_ang_drag; // Angular drag
MT_Scalar m_friction_scaling[3]; // Scaling for anisotropic friction. Component in range [0, 1]
bool m_do_anisotropic; // Should I do anisotropic friction?
bool m_do_fh; // Should the object have a linear Fh spring?
bool m_do_rot_fh; // Should the object have an angular Fh spring?
};
// Properties of collidable objects (non-ghost objects)
struct PHY_MaterialProps {
MT_Scalar m_restitution; // restitution of energie after a collision 0 = inelastic, 1 = elastic
MT_Scalar m_friction; // Coulomb friction (= ratio between the normal en maximum friction force)
MT_Scalar m_fh_spring; // Spring constant (both linear and angular)
MT_Scalar m_fh_damping; // Damping factor (linear and angular) in range [0, 1]
MT_Scalar m_fh_distance; // The range above the surface where Fh is active.
bool m_fh_normal; // Should the object slide off slopes?
};
#endif //PHY_PROPSH