#include "MEM_guardedalloc.h" #include "BLI_utildefines.h" #include "BLI_memarena.h" #include "BLI_mempool.h" #include "BLI_heap.h" #include "BLI_ghash.h" #include "BLI_blenlib.h" #include "BLI_math.h" #include "BLI_array.h" #include "BLI_smallhash.h" #include "BLI_rand.h" #include "bmesh.h" #include "bmesh_operators_private.h" #define EDGE_MARK 1 #define EDGE_VIS 2 #define FACE_NEW 1 #define ELE_NEW 1 #define ELE_OUT 2 #define ELE_ORIG 4 #define FACE_IGNORE 16 typedef struct EPathNode { struct EPathNode *next, *prev; BMVert *v; BMEdge *e; BMEdge *cure; } EPathNode; typedef struct EPath { ListBase nodes; float weight; int group; } EPath; typedef struct PathBase { BLI_mempool *nodepool, *pathpool; } PathBase; typedef struct EdgeData { int tag; int ftag; struct { struct BMEdge *next, *prev; } dlink1; struct { struct BMEdge *next, *prev; } dlink2; } EdgeData; typedef struct VertData { BMEdge *e; float no[3], offco[3], sco[3]; /*offco is vertex coordinate slightly offset randomly*/ int tag; } VertData; static int count_edge_faces(BMesh *bm, BMEdge *e); /**** rotation system code ***/ #define rs_get_edge_link(e, v, ed) ((v) == ((BMEdge*)(e))->v1 ? (Link*)&(((EdgeData*)(ed))->dlink1) : (Link*)&(((EdgeData*)(ed))->dlink2)) static int rotsys_append_edge(struct BMEdge *e, struct BMVert *v, EdgeData *edata, VertData *vdata) { EdgeData *ed = &edata[BM_GetIndex(e)]; VertData *vd = &vdata[BM_GetIndex(v)]; if (!vd->e) { Link *e1 = (Link*)rs_get_edge_link(e, v, ed); vd->e = e; e1->next = e1->prev = (Link*)e; } else { Link *e1, *e2, *e3; EdgeData *ved = &edata[BM_GetIndex(vd->e)]; e1 = rs_get_edge_link(e, v, ed); e2 = rs_get_edge_link(vd->e, v, ved); e3 = e2->prev ? rs_get_edge_link(e2->prev, v, &edata[BM_GetIndex(e2->prev)]) : NULL; e1->next = (Link*)vd->e; e1->prev = e2->prev; e2->prev = (Link*)e; if (e3) e3->next = (Link*)e; } return 1; } static void rotsys_remove_edge(struct BMEdge *e, struct BMVert *v, EdgeData *edata, VertData *vdata) { EdgeData *ed = edata + BM_GetIndex(e); VertData *vd = vdata + BM_GetIndex(v); Link *e1, *e2; e1 = rs_get_edge_link(e, v, ed); if (e1->prev) { e2 = rs_get_edge_link(e1->prev, v, ed); e2->next = e1->next; } if (e1->next) { e2 = rs_get_edge_link(e1->next, v, ed); e2->prev = e1->prev; } if (vd->e == e) vd->e = (e != (BMEdge *)e1->next) ? (BMEdge*)e1->next : NULL; e1->next = e1->prev = NULL; } static struct BMEdge *rotsys_nextedge(struct BMEdge *e, struct BMVert *v, EdgeData *edata, VertData *UNUSED(vdata)) { if (v == e->v1) return edata[BM_GetIndex(e)].dlink1.next; if (v == e->v2) return edata[BM_GetIndex(e)].dlink2.next; return NULL; } static BMEdge *rotsys_prevedge(BMEdge *e, BMVert *v, EdgeData *edata, VertData *UNUSED(vdata)) { if (v == e->v1) return edata[BM_GetIndex(e)].dlink1.prev; if (v == e->v2) return edata[BM_GetIndex(e)].dlink2.prev; return NULL; } static struct BMEdge *rotsys_reverse(struct BMEdge *UNUSED(e), struct BMVert *v, EdgeData *edata, VertData *vdata) { BMEdge **edges = NULL; BMEdge *e2; BLI_array_staticdeclare(edges, 256); int i, totedge; e2 = vdata[BM_GetIndex(v)].e; do { BLI_array_append(edges, e2); e2 = rotsys_nextedge(e2, v, edata, vdata); } while (e2 != vdata[BM_GetIndex(v)].e); totedge = BLI_array_count(edges); for (i=0; i= (1<<20)) { printf("bmesh error: infinite loop in disk cycle!\n"); return 0; } i += 1; } while (e != vdata[BM_GetIndex(v)].e); return i; } static int rotsys_fill_faces(BMesh *bm, EdgeData *edata, VertData *vdata) { BMIter iter; BMEdge *e, **edges = NULL; BLI_array_declare(edges); BMVert *v, **verts = NULL; BMFace *f; BLI_array_declare(verts); SmallHash visithash, *hash=&visithash; int i; BM_ITER(e, &iter, bm, BM_EDGES_OF_MESH, NULL) { BMEdge *e2, *starte; BMVert *startv; int rad, ok; rad = count_edge_faces(bm, e); if (rad < 2) starte = e; else continue; /*do two passes, going forward then backward*/ for (i=0; i<2; i++) { BLI_smallhash_init(hash); BLI_array_empty(verts); BLI_array_empty(edges); startv = v = starte->v1; e2 = starte; ok = 1; if (!v || !e2) continue; do { if (BLI_smallhash_haskey(hash, (intptr_t)e2) || BLI_smallhash_haskey(hash, (intptr_t)v)) { ok = 0; break; } BLI_array_append(verts, v); BLI_array_append(edges, e2); BLI_smallhash_insert(hash, (intptr_t)e2, NULL); v = BM_OtherEdgeVert(e2, v); e2 = i ? rotsys_prevedge(e2, v, edata, vdata) : rotsys_nextedge(e2, v, edata, vdata); } while (e2 != starte && v != startv); BLI_smallhash_release(hash); if (!ok || BLI_array_count(edges) < 3) continue; f = BM_Make_Ngon(bm, verts[0], verts[1], edges, BLI_array_count(edges), 1); if (!f) continue; } } return 0; } static void rotsys_make_consistent(BMesh *bm, EdgeData *edata, VertData *vdata) { BMIter iter; BMEdge *e; BMVert *v, **stack=NULL; BLI_array_declare(stack); int i; for (i=0; itotvert; i++) { vdata[i].tag = 0; } while (1) { VertData *vd; BMVert *startv = NULL; float dis; v = BMIter_New(&iter, bm, BM_VERTS_OF_MESH, NULL); for (i=0; itotvert; i++, BMIter_Step(&iter)) { vd = vdata + BM_GetIndex(v); if (vd->tag) continue; if (!startv || dot_v3v3(vd->offco, vd->offco) > dis) { dis = dot_v3v3(vd->offco, vd->offco); startv = v; } } if (!startv) break; vd = vdata + BM_GetIndex(startv); BLI_array_empty(stack); BLI_array_append(stack, startv); vd->tag = 1; while (BLI_array_count(stack)) { v = BLI_array_pop(stack); vd = vdata + BM_GetIndex(v); if (!vd->e) continue; e = vd->e; do { BMVert *v2 = BM_OtherEdgeVert(e, v); VertData *vd2 = vdata + BM_GetIndex(v2); if (dot_v3v3(vd->no, vd2->no) < 0.0f+FLT_EPSILON*2) { rotsys_reverse(e, v2, edata, vdata); mul_v3_fl(vd2->no, -1.0f); } if (!vd2->tag) { BLI_array_append(stack, v2); vd2->tag = 1; } e = rotsys_nextedge(e, v, edata, vdata); } while (e != vd->e); } } BLI_array_free(stack); } static void init_rotsys(BMesh *bm, EdgeData *edata, VertData *vdata) { BMIter iter; BMEdge *e; BMEdge **edges = NULL; BLI_array_staticdeclare(edges, 256); BMVert *v, *lastv; /*BMVert **verts = NULL; */ /*BLI_array_staticdeclare(verts, 256);*/ /*UNUSED*/ int i; #define SIGN(n) ((n)<0.0f) BM_ITER(v, &iter, bm, BM_VERTS_OF_MESH, NULL) { BMIter eiter; float no[3], cent[3]; int j, k=0, totedge=0; if (BM_GetIndex(v) == -1) continue; BLI_array_empty(edges); BM_ITER(e, &eiter, bm, BM_EDGES_OF_VERT, v) { if (BMO_TestFlag(bm, e, EDGE_MARK)) { BLI_array_append(edges, e); totedge++; } } copy_v3_v3(cent, v->co); zero_v3(no); for (i=0; ico, v->co); sub_v3_v3v3(vec2, (BM_OtherEdgeVert(e2, v))->co, v->co); cross_v3_v3v3(cno, vec1, vec2); normalize_v3(cno); if (i && dot_v3v3(cno, no) < 0.0f+FLT_EPSILON*10) mul_v3_fl(cno, -1.0f); add_v3_v3(no, cno); normalize_v3(no); } /*generate plane-flattened coordinates*/ for (i=0; ico, v->co); cross_v3_v3v3(cvec, vec1, no); cross_v3_v3v3(vec1, cvec, no); normalize_v3(vec1); mul_v3_fl(vec1, len_v3v3(v2->co, v->co)); add_v3_v3(vec1, v->co); copy_v3_v3(vdata[BM_GetIndex(v2)].sco, vec1); } BLI_srandom(0); /*first, ensure no 0 or 180 angles between adjacent (and that adjacent's adjacent) edges*/ for (i=0, k=0; isco, cent); sub_v3_v3v3(vec2, vd2->sco, cent); sub_v3_v3v3(vec3, vd3->sco, cent); size = (len_v3(vec1) + len_v3(vec3))*0.01; normalize_v3(vec1); normalize_v3(vec2); normalize_v3(vec3); #ifdef STRAIGHT #undef STRAIGHT #endif #define STRAIGHT(vec11, vec22) (fabs(dot_v3v3((vec11), (vec22))) > 1.0-FLT_EPSILON*1000) s1 = STRAIGHT(vec1, vec2); s2 = STRAIGHT(vec2, vec3); s3 = STRAIGHT(vec1, vec3); if (s1 || s2 || s3) { copy_v3_v3(cent, v->co); for (j=0; j<3; j++) { float fac = (BLI_frand()-0.5f)*size; cent[j] += fac; } if (k < 2000) { i = 0; k++; continue; } else { k++; continue; } } } copy_v3_v3(vdata[BM_GetIndex(v)].offco, cent); //copy_v3_v3(v->co, cent); /*now, sort edges so the triangle fan of all edges has a consistent normal. this is the same as sorting by polar coordinates along a group normal*/ for (j=0; jsco, cent); sub_v3_v3v3(vec2, vd2->sco, cent); sub_v3_v3v3(vec3, vd3->sco, cent); cross_v3_v3v3(n1, vec1, vec2); cross_v3_v3v3(n2, vec2, vec3); cross_v3_v3v3(n3, vec1, vec3); normalize_v3(n1); normalize_v3(n2); normalize_v3(n3); s1 = STRAIGHT(vec1, vec2); s2 = STRAIGHT(vec2, vec3); s3 = STRAIGHT(vec1, vec3); if (s1 || s2 || s3) { printf("yeek! s1: %d, s2: %d, s3: %dx\n", s1, s2, s3); } if (dot_v3v3(n1, n2) < 0.0f) { if (dot_v3v3(n1, n3) >= 0.0f + FLT_EPSILON*10) { SWAP(BMEdge*, edges[i], edges[(i+1)%totedge]); } else { SWAP(BMEdge*, edges[(i+totedge-1)%totedge], edges[(i+1)%totedge]) SWAP(BMEdge*, edges[i], edges[(i+1)%totedge]) } } } } #undef STRAIGHT zero_v3(no); /*yay, edges is sorted*/ for (i=0; ico, v->co, BM_OtherEdgeVert(e2, v)->co); add_v3_v3(no, eno); rotsys_append_edge(edges[i], v, edata, vdata); } normalize_v3(no); copy_v3_v3(vdata[BM_GetIndex(v)].no, no); } /*now, make sure rotation system is topologically consistent (e.g. vert normals consistently point either inside or outside)*/ rotsys_make_consistent(bm, edata, vdata); //rotsys_fill_faces(bm, edata, vdata); #if 0 /*create visualizing geometry*/ BM_ITER(v, &iter, bm, BM_VERTS_OF_MESH, NULL) { BMVert *v2; BMFace *f; int totedge = BM_Vert_EdgeCount(v); if (BM_GetIndex(v) == -1) continue; //cv = BM_Make_Vert(bm, cent, v); //BM_SetIndex(cv, -1); i = 0; e = vdata[BM_GetIndex(v)].e; lastv = NULL; do { BMEdge *e2; BMVert *v2; float f = ((float)i / (float)totedge)*0.35 + 0.05; float co[3]; if (!e) break; if (!BM_OtherEdgeVert(e, v)) continue; sub_v3_v3v3(co, (BM_OtherEdgeVert(e, v))->co, vdata[BM_GetIndex(v)].offco); mul_v3_fl(co, f); add_v3_v3(co, vdata[BM_GetIndex(v)].offco); v2 = BM_Make_Vert(bm, co, NULL); BM_SetIndex(v2, -1); //BM_Make_Edge(bm, cv, v2, NULL, 0); BM_Select(bm, v2, 1); if (lastv) { e2 = BM_Make_Edge(bm, lastv, v2, NULL, 0); BM_Select(bm, e2, 1); } lastv = v2; e = rotsys_nextedge(e, v, edata, vdata); i++; } while (e != vdata[BM_GetIndex(v)].e); } #endif BLI_array_free(edges); } static PathBase *edge_pathbase_new(void) { PathBase *pb = MEM_callocN(sizeof(PathBase), "PathBase"); pb->nodepool = BLI_mempool_create(sizeof(EPathNode), 1, 512, 1, 0); pb->pathpool = BLI_mempool_create(sizeof(EPath), 1, 512, 1, 0); return pb; } static void edge_pathbase_free(PathBase *pathbase) { BLI_mempool_destroy(pathbase->nodepool); BLI_mempool_destroy(pathbase->pathpool); MEM_freeN(pathbase); } static EPath *edge_copy_add_path(PathBase *pb, EPath *path, BMVert *appendv, BMEdge *e) { EPath *path2; EPathNode *node, *node2; path2 = BLI_mempool_alloc(pb->pathpool); path2->nodes.first = path2->nodes.last = NULL; path2->weight = 0.0f; path2->group = path->group; for (node=path->nodes.first; node; node=node->next) { node2 = BLI_mempool_alloc(pb->nodepool); *node2 = *node; BLI_addtail(&path2->nodes, node2); } node2 = BLI_mempool_alloc(pb->nodepool); node2->v = appendv; node2->e = e; node2->cure = NULL; BLI_addtail(&path2->nodes, node2); return path2; } static EPath *edge_path_new(PathBase *pb, BMVert *start, BMEdge *starte) { EPath *path; EPathNode *node; path = BLI_mempool_alloc(pb->pathpool); node = BLI_mempool_alloc(pb->nodepool); path->nodes.first = path->nodes.last = NULL; node->v = start; node->e = starte; node->cure = NULL; BLI_addtail(&path->nodes, node); path->weight = 0.0f; return path; } static float edge_weight_path(EPath *path, EdgeData *edata, VertData *UNUSED(vdata)) { EPathNode *node, *first=path->nodes.first; float w = 0.0; for (node=path->nodes.first; node; node=node->next) { if (node->e && node != path->nodes.first) { w += edata[BM_GetIndex(node->e)].ftag; if (node->prev) { /*BMESH_TODO*/ (void)first; //w += len_v3v3(node->v->co, first->e->v1->co)*0.0001f; //w += len_v3v3(node->v->co, first->e->v2->co)*0.0001f; } } w += 1.0f; } return w; } static void edge_free_path(PathBase *pathbase, EPath *path) { EPathNode *node, *next; for (node=path->nodes.first; node; node=next) { next = node->next; BLI_mempool_free(pathbase->nodepool, node); } BLI_mempool_free(pathbase->pathpool, path); } static EPath *edge_find_shortest_path(BMesh *bm, BMOperator *op, BMEdge *edge, EdgeData *edata, VertData *vdata, PathBase *pathbase, int group) { BMEdge *e; GHash *gh = BLI_ghash_new(BLI_ghashutil_ptrhash, BLI_ghashutil_ptrcmp, "createops find shortest path"); BMVert *v1, *v2; BMVert **verts = NULL; BLI_array_staticdeclare(verts, 1024); Heap *heap = BLI_heap_new(); EPath *path = NULL, *path2; BMVert *startv; BMVert *endv; EPathNode *node; int i, use_restrict = BMO_Get_Int(op, "use_restrict"); startv = edata[BM_GetIndex(edge)].ftag ? edge->v2 : edge->v1; endv = edata[BM_GetIndex(edge)].ftag ? edge->v1 : edge->v2; path = edge_path_new(pathbase, startv, edge); BLI_ghash_insert(gh, startv, NULL); BLI_heap_insert(heap, path->weight, path); path->group = group; while (BLI_heap_size(heap)) { VertData *vd; EPathNode *last; BMFace *f = NULL; path = BLI_heap_popmin(heap); last = path->nodes.last; v1 = last->v; if (v1 == endv) { /*make sure this path loop doesn't already exist*/ i = 0; BLI_array_empty(verts); for (i=0, node = path->nodes.first; node; node=node->next, i++) { BLI_array_growone(verts); verts[i] = node->v; } if (BM_Face_Exists(bm, verts, i, &f)) { if (!BMO_TestFlag(bm, f, FACE_IGNORE)) { BLI_ghash_remove(gh, endv, NULL, NULL); continue; } } break; } vd = vdata + BM_GetIndex(v1); if (!vd->e) continue; v2 = NULL; while (1) { if (!last->cure) { last->cure = e = vdata[BM_GetIndex(last->v)].e; } else { last->cure = e = rotsys_nextedge(last->cure, last->v, edata, vdata); if (last->cure == vdata[BM_GetIndex(last->v)].e) { v2 = NULL; break; } } if (e == edge || !BMO_TestFlag(bm, e, EDGE_MARK)) { continue; } v2 = BM_OtherEdgeVert(e, last->v); if (BLI_ghash_haskey(gh, v2)) { v2 = NULL; continue; } if (use_restrict && BMO_InMap(bm, op, "restrict", e)) { int group = BMO_Get_MapInt(bm, op, "restrict", e); if (!(group & path->group)) { v2 = NULL; continue; } } break; } if (!v2) { if (path) { edge_free_path(pathbase, path); path = NULL; } continue; } /*add path back into heap*/ BLI_heap_insert(heap, path->weight, path); /*put v2 in gh map*/ BLI_ghash_insert(gh, v2, NULL); path2 = edge_copy_add_path(pathbase, path, v2, e); path2->weight = edge_weight_path(path2, edata, vdata); BLI_heap_insert(heap, path2->weight, path2); } if (path && ((EPathNode*)path->nodes.last)->v != endv) { edge_free_path(pathbase, path); path = NULL; } BLI_array_free(verts); BLI_heap_free(heap, NULL); BLI_ghash_free(gh, NULL, NULL); return path; } static int count_edge_faces(BMesh *bm, BMEdge *e) { int i=0; BMLoop *l = e->l; if (!l) return 0; do { if (!BMO_TestFlag(bm, l->f, FACE_IGNORE)) i++; l = l->radial_next; } while (l != e->l); return i; } void bmesh_edgenet_fill_exec(BMesh *bm, BMOperator *op) { BMIter iter; BMOIter siter; BMFace *f; BMEdge *e, *edge; BMVert *v, **verts = NULL; BLI_array_declare(verts); EPath *path; EPathNode *node; EdgeData *edata; VertData *vdata; BMEdge **edges = NULL; PathBase *pathbase = edge_pathbase_new(); BLI_array_declare(edges); int use_restrict = BMO_Get_Int(op, "use_restrict"); int i, j, group = 0; if (!bm->totvert || !bm->totedge) return; edata = MEM_callocN(sizeof(EdgeData)*bm->totedge, "EdgeData"); vdata = MEM_callocN(sizeof(VertData)*bm->totvert, "VertData"); BMO_Flag_Buffer(bm, op, "edges", EDGE_MARK, BM_EDGE); BMO_Flag_Buffer(bm, op, "excludefaces", FACE_IGNORE, BM_FACE); i = 0; BM_ITER(v, &iter, bm, BM_VERTS_OF_MESH, NULL) { BM_SetIndex(v, i); i++; } BM_ITER(f, &iter, bm, BM_FACES_OF_MESH, NULL) { BMO_SetFlag(bm, f, ELE_ORIG); } i = 0; BM_ITER(e, &iter, bm, BM_EDGES_OF_MESH, NULL) { BM_SetIndex(e, i); if (!BMO_TestFlag(bm, e, EDGE_MARK)) { edata[i].tag = 2; } i += 1; } init_rotsys(bm, edata, vdata); while (1) { edge = NULL; group = 0; BMO_ITER(e, &siter, bm, op, "edges", BM_EDGE) { /*if restrict is on, only start on faces in the restrict map*/ if (use_restrict && !BMO_InMap(bm, op, "restrict", e)) continue; if (edata[BM_GetIndex(e)].tag < 2) { edge = e; if (use_restrict) { int i=0, j=0, gi=0; group = BMO_Get_MapInt(bm, op, "restrict", e); for (i=0; i<30; i++) { if (group & (1<nodes.first; node; node=node->next) { if (!node->next) continue; e = BM_Edge_Exist(node->v, node->next->v); /*this should never happen*/ if (!e) break; edata[BM_GetIndex(e)].ftag++; BLI_array_growone(edges); edges[i++] = e; BLI_array_append(verts, node->v); } BLI_array_growone(edges); edges[i++] = edge; edata[BM_GetIndex(edge)].ftag++; for (j=0; j= 2) { edge_free_path(pathbase, path); break; } } if (j != i) continue; if (i) { f = BM_Make_Ngon(bm, edge->v1, edge->v2, edges, i, 1); if (f && !BMO_TestFlag(bm, f, ELE_ORIG)) { BMO_SetFlag(bm, f, FACE_NEW); } if (use_restrict) BMO_Insert_MapInt(bm, op, "faceout_groupmap", f, path->group); } edge_free_path(pathbase, path); } BMO_Flag_To_Slot(bm, op, "faceout", FACE_NEW, BM_FACE); BLI_array_free(edges); BLI_array_free(verts); edge_pathbase_free(pathbase); MEM_freeN(edata); MEM_freeN(vdata); } static BMEdge *edge_next(BMesh *bm, BMEdge *e) { BMIter iter; BMEdge *e2; int i; for (i=0; i<2; i++) { BM_ITER(e2, &iter, bm, BM_EDGES_OF_VERT, i?e->v2:e->v1) { if (BMO_TestFlag(bm, e2, EDGE_MARK) && !BMO_TestFlag(bm, e2, EDGE_VIS) && e2 != e) { return e2; } } } return NULL; } void bmesh_edgenet_prepare(BMesh *bm, BMOperator *op) { BMOIter siter; BMEdge *e; BMEdge **edges1 = NULL, **edges2 = NULL, **edges; BLI_array_declare(edges1); BLI_array_declare(edges2); BLI_array_declare(edges); int ok = 1; int i, count; BMO_Flag_Buffer(bm, op, "edges", EDGE_MARK, BM_EDGE); /*validate that each edge has at most one other tagged edge in the disk cycle around each of it's vertices*/ BMO_ITER(e, &siter, bm, op, "edges", BM_EDGE) { for (i=0; i<2; i++) { count = BMO_Vert_CountEdgeFlags(bm, i?e->v2:e->v1, EDGE_MARK); if (count > 2) { ok = 0; break; } } if (!ok) break; } /*we don't have valid edge layouts, return*/ if (!ok) return; /*find connected loops within the input edges*/ count = 0; while (1) { BMO_ITER(e, &siter, bm, op, "edges", BM_EDGE) { if (!BMO_TestFlag(bm, e, EDGE_VIS)) { if (BMO_Vert_CountEdgeFlags(bm, e->v1, EDGE_MARK)==1) break; if (BMO_Vert_CountEdgeFlags(bm, e->v2, EDGE_MARK)==1) break; } } if (!e) break; if (!count) edges = edges1; else if (count==1) edges = edges2; else break; i = 0; while (e) { BMO_SetFlag(bm, e, EDGE_VIS); BLI_array_growone(edges); edges[i] = e; e = edge_next(bm, e); i++; } if (!count) { edges1 = edges; BLI_array_set_length(edges1, BLI_array_count(edges)); } else { edges2 = edges; BLI_array_set_length(edges2, BLI_array_count(edges)); } BLI_array_empty(edges); count++; } #define EDGECON(e1, e2) (e1->v1 == e2->v1 || e1->v2 == e2->v2 || e1->v1 == e2->v2) if (edges1 && BLI_array_count(edges1) > 2 && EDGECON(edges1[0], edges1[BLI_array_count(edges1)-1])) { if (edges2 && BLI_array_count(edges2) > 2 && EDGECON(edges2[0], edges2[BLI_array_count(edges2)-1])) { BLI_array_free(edges1); BLI_array_free(edges2); return; } else { edges1 = edges2; edges2 = NULL; } } if (edges2 && BLI_array_count(edges2) > 2 && EDGECON(edges2[0], edges2[BLI_array_count(edges2)-1])) { edges2 = NULL; } /*two unconnected loops, connect them*/ if (edges1 && edges2) { BMVert *v1, *v2, *v3, *v4; if (BLI_array_count(edges1)==1) { v1 = edges1[0]->v1; v2 = edges1[0]->v2; } else { if (BM_Vert_In_Edge(edges1[1], edges1[0]->v1)) v1 = edges1[0]->v2; else v1 = edges1[0]->v1; i = BLI_array_count(edges1)-1; if (BM_Vert_In_Edge(edges1[i-1], edges1[i]->v1)) v2 = edges1[i]->v2; else v2 = edges1[i]->v1; } if (BLI_array_count(edges2)==1) { v3 = edges2[0]->v1; v4 = edges2[0]->v2; } else { if (BM_Vert_In_Edge(edges2[1], edges2[0]->v1)) v3 = edges2[0]->v2; else v3 = edges2[0]->v1; i = BLI_array_count(edges2)-1; if (BM_Vert_In_Edge(edges2[i-1], edges2[i]->v1)) v4 = edges2[i]->v2; else v4 = edges2[i]->v1; } if (len_v3v3(v1->co, v3->co) > len_v3v3(v1->co, v4->co)) { BMVert *v; v = v3; v3 = v4; v4 = v; } e = BM_Make_Edge(bm, v1, v3, NULL, 1); BMO_SetFlag(bm, e, ELE_NEW); e = BM_Make_Edge(bm, v2, v4, NULL, 1); BMO_SetFlag(bm, e, ELE_NEW); } else if (edges1) { BMVert *v1, *v2; if (BLI_array_count(edges1) > 1) { if (BM_Vert_In_Edge(edges1[1], edges1[0]->v1)) v1 = edges1[0]->v2; else v1 = edges1[0]->v1; i = BLI_array_count(edges1)-1; if (BM_Vert_In_Edge(edges1[i-1], edges1[i]->v1)) v2 = edges1[i]->v2; else v2 = edges1[i]->v1; e = BM_Make_Edge(bm, v1, v2, NULL, 1); BMO_SetFlag(bm, e, ELE_NEW); } } BMO_Flag_To_Slot(bm, op, "edgeout", ELE_NEW, BM_EDGE); BLI_array_free(edges1); BLI_array_free(edges2); #undef EDGECON } /*this is essentially new fkey*/ void bmesh_contextual_create_exec(BMesh *bm, BMOperator *op) { BMOperator op2; BMOIter oiter; BMIter iter; BMHeader *h; BMVert *v, *verts[4]; BMEdge *e; BMFace *f; int totv=0, tote=0, totf=0, amount; /*count number of each element type we were passed*/ BMO_ITER(h, &oiter, bm, op, "geom", BM_VERT|BM_EDGE|BM_FACE) { switch (h->type) { case BM_VERT: totv++; break; case BM_EDGE: tote++; break; case BM_FACE: totf++; break; } BMO_SetFlag(bm, h, ELE_NEW); } /*call edgenet create*/ /* call edgenet prepare op so additional face creation cases work*/ BMO_InitOpf(bm, &op2, "edgenet_prepare edges=%fe", ELE_NEW); BMO_Exec_Op(bm, &op2); BMO_Flag_Buffer(bm, &op2, "edgeout", ELE_NEW, BM_EDGE); BMO_Finish_Op(bm, &op2); BMO_InitOpf(bm, &op2, "edgenet_fill edges=%fe", ELE_NEW); BMO_Exec_Op(bm, &op2); /*return if edge net create did something*/ if (BMO_CountSlotBuf(bm, &op2, "faceout")) { BMO_CopySlot(&op2, op, "faceout", "faceout"); BMO_Finish_Op(bm, &op2); return; } BMO_Finish_Op(bm, &op2); /*now call dissolve faces*/ BMO_InitOpf(bm, &op2, "dissolvefaces faces=%ff", ELE_NEW); BMO_Exec_Op(bm, &op2); /*if we dissolved anything, then return.*/ if (BMO_CountSlotBuf(bm, &op2, "regionout")) { BMO_CopySlot(&op2, op, "regionout", "faceout"); BMO_Finish_Op(bm, &op2); return; } BMO_Finish_Op(bm, &op2); /*now, count how many verts we have*/ amount = 0; BM_ITER(v, &iter, bm, BM_VERTS_OF_MESH, NULL) { if (BMO_TestFlag(bm, v, ELE_NEW)) { verts[amount] = v; amount++; if (amount > 4) break; } } if (amount == 2) { /*create edge*/ e = BM_Make_Edge(bm, verts[0], verts[1], NULL, 1); BMO_SetFlag(bm, e, ELE_OUT); } else if (amount == 3) { /*create triangle*/ BM_Make_QuadTri(bm, verts[0], verts[1], verts[2], NULL, NULL, 1); } else if (amount == 4) { f = NULL; /* the order of vertices can be anything, 6 cases to check */ if( is_quad_convex_v3(verts[0]->co, verts[1]->co, verts[2]->co, verts[3]->co) ) { f= BM_Make_QuadTri(bm, verts[0], verts[1], verts[2], verts[3], NULL, 1); } else if( is_quad_convex_v3(verts[0]->co, verts[2]->co, verts[3]->co, verts[1]->co) ) { f= BM_Make_QuadTri(bm, verts[0], verts[2], verts[3], verts[1], NULL, 1); } else if( is_quad_convex_v3(verts[0]->co, verts[2]->co, verts[1]->co, verts[3]->co) ) { f= BM_Make_QuadTri(bm, verts[0], verts[2], verts[1], verts[3], NULL, 1); } else if( is_quad_convex_v3(verts[0]->co, verts[1]->co, verts[3]->co, verts[2]->co) ) { f= BM_Make_QuadTri(bm, verts[0], verts[1], verts[3], verts[2], NULL, 1); } else if( is_quad_convex_v3(verts[0]->co, verts[3]->co, verts[2]->co, verts[1]->co) ) { f= BM_Make_QuadTri(bm, verts[0], verts[3], verts[2], verts[1], NULL, 1); } else if( is_quad_convex_v3(verts[0]->co, verts[3]->co, verts[1]->co, verts[2]->co) ) { f= BM_Make_QuadTri(bm, verts[0], verts[3], verts[1], verts[2], NULL, 1); } else { printf("cannot find nice quad from concave set of vertices\n"); } if (f) BMO_SetFlag(bm, f, ELE_OUT); } }