#include "MEM_guardedalloc.h" #include "BKE_customdata.h" #include "DNA_listBase.h" #include "DNA_customdata_types.h" #include "DNA_mesh_types.h" #include "DNA_meshdata_types.h" #include "DNA_object_types.h" #include "DNA_scene_types.h" #include #include "BKE_utildefines.h" #include "BKE_mesh.h" #include "BKE_global.h" #include "BKE_DerivedMesh.h" #include "BKE_cdderivedmesh.h" #include "BLI_editVert.h" #include "mesh_intern.h" #include "ED_mesh.h" #include "BLI_math.h" #include "BLI_array.h" #include "BLI_blenlib.h" #include "BLI_edgehash.h" #include "BLI_heap.h" #include "bmesh.h" #include "bmesh_operators_private.h" /* own include */ /* * UTILS.C * * utility bmesh operators, e.g. transform, * translate, rotate, scale, etc. * */ void bmesh_makevert_exec(BMesh *bm, BMOperator *op) { float vec[3]; BMO_Get_Vec(op, "co", vec); BMO_SetFlag(bm, BM_Make_Vert(bm, vec, NULL), 1); BMO_Flag_To_Slot(bm, op, "newvertout", 1, BM_VERT); } void bmesh_transform_exec(BMesh *bm, BMOperator *op) { BMOIter iter; BMVert *v; float mat[4][4]; BMO_Get_Mat4(op, "mat", mat); BMO_ITER(v, &iter, bm, op, "verts", BM_VERT) { mul_m4_v3(mat, v->co); } } void bmesh_translate_exec(BMesh *bm, BMOperator *op) { float mat[4][4], vec[3]; BMO_Get_Vec(op, "vec", vec); unit_m4(mat); copy_v3_v3(mat[3], vec); BMO_CallOpf(bm, "transform mat=%m4 verts=%s", mat, op, "verts"); } void bmesh_scale_exec(BMesh *bm, BMOperator *op) { float mat[3][3], vec[3]; BMO_Get_Vec(op, "vec", vec); unit_m3(mat); mat[0][0] = vec[0]; mat[1][1] = vec[1]; mat[2][2] = vec[2]; BMO_CallOpf(bm, "transform mat=%m3 verts=%s", mat, op, "verts"); } void bmesh_rotate_exec(BMesh *bm, BMOperator *op) { float vec[3]; BMO_Get_Vec(op, "cent", vec); /*there has to be a proper matrix way to do this, but this is how editmesh did it and I'm too tired to think through the math right now.*/ mul_v3_fl(vec, -1); BMO_CallOpf(bm, "translate verts=%s vec=%v", op, "verts", vec); BMO_CallOpf(bm, "transform mat=%s verts=%s", op, "mat", op, "verts"); mul_v3_fl(vec, -1); BMO_CallOpf(bm, "translate verts=%s vec=%v", op, "verts", vec); } void bmesh_reversefaces_exec(BMesh *bm, BMOperator *op) { BMOIter siter; BMFace *f; BMO_ITER(f, &siter, bm, op, "faces", BM_FACE) { BM_flip_normal(bm, f); } } void bmesh_edgerotate_exec(BMesh *bm, BMOperator *op) { BMOIter siter; BMEdge *e, *e2; int ccw = BMO_Get_Int(op, "ccw"); BMO_ITER(e, &siter, bm, op, "edges", BM_EDGE) { if (!(e2 = BM_Rotate_Edge(bm, e, ccw))) { BMO_RaiseError(bm, op, BMERR_INVALID_SELECTION, "Could not rotate edge"); return; } BMO_SetFlag(bm, e2, 1); } BMO_Flag_To_Slot(bm, op, "edgeout", 1, BM_EDGE); } #define SEL_FLAG 1 #define SEL_ORIG 2 static void bmesh_regionextend_extend(BMesh *bm, BMOperator *op, int usefaces) { BMVert *v; BMEdge *e; BMIter eiter; BMOIter siter; if (!usefaces) { BMO_ITER(v, &siter, bm, op, "geom", BM_VERT) { BM_ITER(e, &eiter, bm, BM_EDGES_OF_VERT, v) { if (!BMO_TestFlag(bm, e, SEL_ORIG)) break; } if (e) { BM_ITER(e, &eiter, bm, BM_EDGES_OF_VERT, v) { BMO_SetFlag(bm, e, SEL_FLAG); BMO_SetFlag(bm, BM_OtherEdgeVert(e, v), SEL_FLAG); } } } } else { BMIter liter, fiter; BMFace *f, *f2; BMLoop *l; BMO_ITER(f, &siter, bm, op, "geom", BM_FACE) { BM_ITER(l, &liter, bm, BM_LOOPS_OF_FACE, f) { BM_ITER(f2, &fiter, bm, BM_FACES_OF_EDGE, l->e) { if (!BMO_TestFlag(bm, f2, SEL_ORIG)) BMO_SetFlag(bm, f2, SEL_FLAG); } } } } } static void bmesh_regionextend_constrict(BMesh *bm, BMOperator *op, int usefaces) { BMVert *v; BMEdge *e; BMIter eiter; BMOIter siter; if (!usefaces) { BMO_ITER(v, &siter, bm, op, "geom", BM_VERT) { BM_ITER(e, &eiter, bm, BM_EDGES_OF_VERT, v) { if (!BMO_TestFlag(bm, e, SEL_ORIG)) break; } if (e) { BMO_SetFlag(bm, v, SEL_FLAG); BM_ITER(e, &eiter, bm, BM_EDGES_OF_VERT, v) { BMO_SetFlag(bm, e, SEL_FLAG); } } } } else { BMIter liter, fiter; BMFace *f, *f2; BMLoop *l; BMO_ITER(f, &siter, bm, op, "geom", BM_FACE) { BM_ITER(l, &liter, bm, BM_LOOPS_OF_FACE, f) { BM_ITER(f2, &fiter, bm, BM_FACES_OF_EDGE, l->e) { if (!BMO_TestFlag(bm, f2, SEL_ORIG)) { BMO_SetFlag(bm, f, SEL_FLAG); break; } } } } } } void bmesh_regionextend_exec(BMesh *bm, BMOperator *op) { int usefaces = BMO_Get_Int(op, "usefaces"); int constrict = BMO_Get_Int(op, "constrict"); BMO_Flag_Buffer(bm, op, "geom", SEL_ORIG, BM_ALL); if (constrict) bmesh_regionextend_constrict(bm, op, usefaces); else bmesh_regionextend_extend(bm, op, usefaces); BMO_Flag_To_Slot(bm, op, "geomout", SEL_FLAG, BM_ALL); } /********* righthand faces implementation ********/ #define FACE_VIS 1 #define FACE_FLAG 2 #define FACE_MARK 4 #define FACE_FLIP 8 /* NOTE: these are the original righthandfaces comment in editmesh_mods.c, copied here for reference. */ /* based at a select-connected to witness loose objects */ /* count per edge the amount of faces */ /* find the ultimate left, front, upper face (not manhattan dist!!) */ /* also evaluate both triangle cases in quad, since these can be non-flat */ /* put normal to the outside, and set the first direction flags in edges */ /* then check the object, and set directions / direction-flags: but only for edges with 1 or 2 faces */ /* this is in fact the 'select connected' */ /* in case (selected) faces were not done: start over with 'find the ultimate ...' */ /*note: this function uses recursion, which is a little unusual for a bmop function, but acceptable I think.*/ void bmesh_righthandfaces_exec(BMesh *bm, BMOperator *op) { BMIter liter, liter2; BMOIter siter; BMFace *f, *startf, **fstack = NULL; BLI_array_declare(fstack); BMLoop *l, *l2; float maxx, cent[3]; int i, maxi, flagflip = BMO_Get_Int(op, "doflip"); startf= NULL; maxx= -1.0e10; BMO_Flag_Buffer(bm, op, "faces", FACE_FLAG, BM_FACE); /*find a starting face*/ BMO_ITER(f, &siter, bm, op, "faces", BM_FACE) { if (BMO_TestFlag(bm, f, FACE_VIS)) continue; if (!startf) startf = f; BM_Compute_Face_Center(bm, f, cent); cent[0] = cent[0]*cent[0] + cent[1]*cent[1] + cent[2]*cent[2]; if (cent[0] > maxx) { maxx = cent[0]; startf = f; } } if (!startf) return; BM_Compute_Face_Center(bm, startf, cent); /*make sure the starting face has the correct winding*/ if (cent[0]*startf->no[0] + cent[1]*startf->no[1] + cent[2]*startf->no[2] < 0.0) { BM_flip_normal(bm, startf); BMO_ToggleFlag(bm, startf, FACE_FLIP); if (flagflip) BM_ToggleHFlag(startf, BM_FLIPPED); } /*now that we've found our starting face, make all connected faces have the same winding. this is done recursively, using a manual stack (if we use simple function recursion, we'd end up overloading the stack on large meshes).*/ BLI_array_growone(fstack); fstack[0] = startf; BMO_SetFlag(bm, startf, FACE_VIS); i = 0; maxi = 1; while (i >= 0) { f = fstack[i]; i--; BM_ITER(l, &liter, bm, BM_LOOPS_OF_FACE, f) { BM_ITER(l2, &liter2, bm, BM_LOOPS_OF_LOOP, l) { if (!BMO_TestFlag(bm, l2->f, FACE_FLAG) || l2 == l) continue; if (!BMO_TestFlag(bm, l2->f, FACE_VIS)) { BMO_SetFlag(bm, l2->f, FACE_VIS); i++; if (l2->v == l->v) { BM_flip_normal(bm, l2->f); BMO_ToggleFlag(bm, l2->f, FACE_FLIP); if (flagflip) BM_ToggleHFlag(l2->f, BM_FLIPPED); } else if (BM_TestHFlag(l2->f, BM_FLIPPED) || BM_TestHFlag(l->f, BM_FLIPPED)) { if (flagflip) { BM_ClearHFlag(l->f, BM_FLIPPED); BM_ClearHFlag(l2->f, BM_FLIPPED); } } if (i == maxi) { BLI_array_growone(fstack); maxi++; } fstack[i] = l2->f; } } } } BLI_array_free(fstack); /*check if we have faces yet to do. if so, recurse.*/ BMO_ITER(f, &siter, bm, op, "faces", BM_FACE) { if (!BMO_TestFlag(bm, f, FACE_VIS)) { bmesh_righthandfaces_exec(bm, op); break; } } } void bmesh_vertexsmooth_exec(BMesh *bm, BMOperator *op) { BMOIter siter; BMIter iter; BMVert *v; BMEdge *e; BLI_array_declare(cos); float (*cos)[3] = NULL; float *co, *co2, clipdist = BMO_Get_Float(op, "clipdist"); int i, j, clipx, clipy, clipz; clipx = BMO_Get_Int(op, "mirror_clip_x"); clipy = BMO_Get_Int(op, "mirror_clip_y"); clipz = BMO_Get_Int(op, "mirror_clip_z"); i = 0; BMO_ITER(v, &siter, bm, op, "verts", BM_VERT) { BLI_array_growone(cos); co = cos[i]; j = 0; BM_ITER(e, &iter, bm, BM_EDGES_OF_VERT, v) { co2 = BM_OtherEdgeVert(e, v)->co; add_v3_v3v3(co, co, co2); j += 1; } if (!j) { copy_v3_v3(co, v->co); i++; continue; } co[0] /= (float)j; co[1] /= (float)j; co[2] /= (float)j; co[0] = v->co[0]*0.5 + co[0]*0.5; co[1] = v->co[1]*0.5 + co[1]*0.5; co[2] = v->co[2]*0.5 + co[2]*0.5; if (clipx && fabs(v->co[0]) < clipdist) co[0] = 0.0f; if (clipy && fabs(v->co[1]) < clipdist) co[1] = 0.0f; if (clipz && fabs(v->co[2]) < clipdist) co[2] = 0.0f; i++; } i = 0; BMO_ITER(v, &siter, bm, op, "verts", BM_VERT) { copy_v3_v3(v->co, cos[i]); i++; } BLI_array_free(cos); } /* ** compute the centroid of an ngon ** ** NOTE: This should probably go to bmesh_polygon.c and replace the function that compute its center ** basing on bounding box */ static void ngon_center(float *v, BMesh *bm, BMFace *f) { BMIter liter; BMLoop *l; v[0] = v[1] = v[2] = 0; BM_ITER(l, &liter, bm, BM_LOOPS_OF_FACE, f) { add_v3_v3v3(v, v, l->v->co); } if( f->len ) { v[0] /= f->len; v[1] /= f->len; v[2] /= f->len; } } /* ** compute the perimeter of an ngon ** ** NOTE: This should probably go to bmesh_polygon.c */ static float ngon_perimeter(BMesh *bm, BMFace *f) { BMIter liter; BMLoop *l; int num_verts = 0; float v[3], sv[3]; float perimeter = 0.0f; BM_ITER(l, &liter, bm, BM_LOOPS_OF_FACE, f) { if( num_verts == 0 ) { sv[0] = v[0] = l->v->co[0]; sv[1] = v[1] = l->v->co[1]; sv[2] = v[2] = l->v->co[2]; num_verts++; } else { perimeter += len_v3v3(v, l->v->co); v[0] = l->v->co[0]; v[1] = l->v->co[1]; v[2] = l->v->co[2]; num_verts++; } } perimeter += len_v3v3(v, sv); return perimeter; } /* ** compute the fake surface of an ngon ** This is done by decomposing the ngon into triangles who share the centroid of the ngon ** while this method is far from being exact, it should garantee an invariance. ** ** NOTE: This should probably go to bmesh_polygon.c */ static float ngon_fake_area(BMesh *bm, BMFace *f) { BMIter liter; BMLoop *l; int num_verts = 0; float v[3], sv[3], c[3]; float area = 0.0f; ngon_center(c, bm, f); BM_ITER(l, &liter, bm, BM_LOOPS_OF_FACE, f) { if( num_verts == 0 ) { sv[0] = v[0] = l->v->co[0]; sv[1] = v[1] = l->v->co[1]; sv[2] = v[2] = l->v->co[2]; num_verts++; } else { area += area_tri_v3(v, c, l->v->co); v[0] = l->v->co[0]; v[1] = l->v->co[1]; v[2] = l->v->co[2]; num_verts++; } } area += area_tri_v3(v, c, sv); return area; } /* ** extra face data (computed data) */ typedef struct tmp_face_ext { BMFace *f; /* the face */ float c[3]; /* center */ union { float area; /* area */ float perim; /* perimeter */ float d; /* 4th component of plane (the first three being the normal) */ struct Image *t; /* image pointer */ }; } tmp_face_ext; /* ** Select similar faces, the choices are in the enum in source/blender/bmesh/bmesh_operators.h ** We select either similar faces based on material, image, area, perimeter, normal, or the coplanar faces */ void bmesh_similarfaces_exec(BMesh *bm, BMOperator *op) { BMIter fm_iter; BMFace *fs, *fm; BMOIter fs_iter; int num_sels = 0, num_total = 0, i = 0, idx = 0; float angle = 0.0f; tmp_face_ext *f_ext = NULL; int *indices = NULL; float t_no[3]; /* temporary normal */ int type = BMO_Get_Int(op, "type"); float thresh = BMO_Get_Float(op, "thresh"); num_total = BM_Count_Element(bm, BM_FACE); /* ** The first thing to do is to iterate through all the the selected items and mark them since ** they will be in the selection anyway. ** This will increase performance, (especially when the number of originaly selected faces is high) ** so the overall complexity will be less than $O(mn)$ where is the total number of selected faces, ** and n is the total number of faces */ BMO_ITER(fs, &fs_iter, bm, op, "faces", BM_FACE) { if (!BMO_TestFlag(bm, fs, FACE_MARK)) { /* is this really needed ? */ BMO_SetFlag(bm, fs, FACE_MARK); num_sels++; } } /* allocate memory for the selected faces indices and for all temporary faces */ indices = (int*)MEM_callocN(sizeof(int) * num_sels, "face indices util.c"); f_ext = (tmp_face_ext*)MEM_callocN(sizeof(tmp_face_ext) * num_total, "f_ext util.c"); /* loop through all the faces and fill the faces/indices structure */ BM_ITER(fm, &fm_iter, bm, BM_FACES_OF_MESH, NULL) { f_ext[i].f = fm; if (BMO_TestFlag(bm, fm, FACE_MARK)) { indices[idx] = i; idx++; } i++; } /* ** Save us some computation burden: In case of perimeter/area/coplanar selection we compute ** only once. */ if( type == SIMFACE_PERIMETER || type == SIMFACE_AREA || type == SIMFACE_COPLANAR || type == SIMFACE_IMAGE ) { for( i = 0; i < num_total; i++ ) { switch( type ) { case SIMFACE_PERIMETER: /* set the perimeter */ f_ext[i].perim = ngon_perimeter(bm, f_ext[i].f); break; case SIMFACE_COPLANAR: /* compute the center of the polygon */ ngon_center(f_ext[i].c, bm, f_ext[i].f); /* normalize the polygon normal */ copy_v3_v3(t_no, f_ext[i].f->no); normalize_v3(t_no); /* compute the plane distance */ f_ext[i].d = dot_v3v3(t_no, f_ext[i].c); break; case SIMFACE_AREA: f_ext[i].area = ngon_fake_area(bm, f_ext[i].f); break; case SIMFACE_IMAGE: f_ext[i].t = NULL; if( CustomData_has_layer(&(bm->pdata), CD_MTEXPOLY) ) { MTexPoly *mtpoly = CustomData_bmesh_get(&bm->pdata, f_ext[i].f->head.data, CD_MTEXPOLY); f_ext[i].t = mtpoly->tpage; } break; } } } /* now select the rest (if any) */ for( i = 0; i < num_total; i++ ) { fm = f_ext[i].f; if( !BMO_TestFlag(bm, fm, FACE_MARK) && !BM_TestHFlag(fm, BM_HIDDEN) ) { int cont = 1; for( idx = 0; idx < num_sels && cont == 1; idx++ ) { fs = f_ext[indices[idx]].f; switch( type ) { case SIMFACE_MATERIAL: if( fm->mat_nr == fs->mat_nr ) { BMO_SetFlag(bm, fm, FACE_MARK); cont = 0; } break; case SIMFACE_IMAGE: if( f_ext[i].t == f_ext[indices[idx]].t ) { BMO_SetFlag(bm, fm, FACE_MARK); cont = 0; } break; case SIMFACE_NORMAL: angle = RAD2DEG(angle_v2v2(fs->no, fm->no)); /* if the angle between the normals -> 0 */ if( angle / 180.0 <= thresh ) { BMO_SetFlag(bm, fm, FACE_MARK); cont = 0; } break; case SIMFACE_COPLANAR: angle = RAD2DEG(angle_v2v2(fs->no, fm->no)); /* angle -> 0 */ if( angle / 180.0 <= thresh ) { /* and dot product difference -> 0 */ if( fabs(f_ext[i].d - f_ext[indices[idx]].d) <= thresh ) { BMO_SetFlag(bm, fm, FACE_MARK); cont = 0; } } break; case SIMFACE_AREA: if( fabs(f_ext[i].area - f_ext[indices[idx]].area) <= thresh ) { BMO_SetFlag(bm, fm, FACE_MARK); cont = 0; } break; case SIMFACE_PERIMETER: if( fabs(f_ext[i].perim - f_ext[indices[idx]].perim) <= thresh ) { BMO_SetFlag(bm, fm, FACE_MARK); cont = 0; } break; } } } } MEM_freeN(f_ext); MEM_freeN(indices); /* transfer all marked faces to the output slot */ BMO_Flag_To_Slot(bm, op, "faceout", FACE_MARK, BM_FACE); } /****************************************************************************** ** Similar Edges ******************************************************************************/ #define EDGE_MARK 1 /* ** compute the angle of an edge (i.e. the angle between two faces) */ static float edge_angle(BMesh *bm, BMEdge *e) { BMIter fiter; BMFace *f; int num_faces = 0; float n1[3], n2[3]; float angle = 0.0f; BM_ITER(f, &fiter, bm, BM_FACES_OF_EDGE, e) { if( num_faces == 0 ) { n1[0] = f->no[0]; n1[1] = f->no[1]; n1[2] = f->no[2]; num_faces++; } else { n2[0] = f->no[0]; n2[1] = f->no[1]; n2[2] = f->no[2]; num_faces++; } } angle = angle_v2v2(n1, n2); return angle; } /* ** extra edge information */ typedef struct tmp_edge_ext { BMEdge *e; union { float dir[3]; float angle; /* angle between the faces*/ }; union { float length; /* edge length */ int faces; /* faces count */ }; } tmp_edge_ext; /* ** select similar edges: the choices are in the enum in source/blender/bmesh/bmesh_operators.h ** choices are length, direction, face, ... */ void bmesh_similaredges_exec(BMesh *bm, BMOperator *op) { BMOIter es_iter; /* selected edges iterator */ BMIter e_iter; /* mesh edges iterator */ BMEdge *es; /* selected edge */ BMEdge *e; /* mesh edge */ int idx = 0, i = 0 /* , f = 0 */; int *indices = NULL; tmp_edge_ext *e_ext = NULL; // float *angles = NULL; float angle; int num_sels = 0, num_total = 0; int type = BMO_Get_Int(op, "type"); float thresh = BMO_Get_Float(op, "thresh"); num_total = BM_Count_Element(bm, BM_EDGE); /* iterate through all selected edges and mark them */ BMO_ITER(es, &es_iter, bm, op, "edges", BM_EDGE) { BMO_SetFlag(bm, es, EDGE_MARK); num_sels++; } /* allocate memory for the selected edges indices and for all temporary edges */ indices = (int*)MEM_callocN(sizeof(int) * num_sels, "indices util.c"); e_ext = (tmp_edge_ext*)MEM_callocN(sizeof(tmp_edge_ext) * num_total, "e_ext util.c"); /* loop through all the edges and fill the edges/indices structure */ BM_ITER(e, &e_iter, bm, BM_EDGES_OF_MESH, NULL) { e_ext[i].e = e; if (BMO_TestFlag(bm, e, EDGE_MARK)) { indices[idx] = i; idx++; } i++; } /* save us some computation time by doing heavy computation once */ if( type == SIMEDGE_LENGTH || type == SIMEDGE_FACE || type == SIMEDGE_DIR || type == SIMEDGE_FACE_ANGLE ) { for( i = 0; i < num_total; i++ ) { switch( type ) { case SIMEDGE_LENGTH: /* compute the length of the edge */ e_ext[i].length = len_v3v3(e_ext[i].e->v1->co, e_ext[i].e->v2->co); break; case SIMEDGE_DIR: /* compute the direction */ sub_v3_v3v3(e_ext[i].dir, e_ext[i].e->v1->co, e_ext[i].e->v2->co); break; case SIMEDGE_FACE: /* count the faces around the edge */ e_ext[i].faces = BM_Edge_FaceCount(e_ext[i].e); break; case SIMEDGE_FACE_ANGLE: e_ext[i].faces = BM_Edge_FaceCount(e_ext[i].e); if( e_ext[i].faces == 2 ) e_ext[i].angle = edge_angle(bm, e_ext[i].e); break; } } } /* select the edges if any */ for( i = 0; i < num_total; i++ ) { e = e_ext[i].e; if( !BMO_TestFlag(bm, e, EDGE_MARK) && !BM_TestHFlag(e, BM_HIDDEN) ) { int cont = 1; for( idx = 0; idx < num_sels && cont == 1; idx++ ) { es = e_ext[indices[idx]].e; switch( type ) { case SIMEDGE_LENGTH: if( fabs(e_ext[i].length - e_ext[indices[idx]].length) <= thresh ) { BMO_SetFlag(bm, e, EDGE_MARK); cont = 0; } break; case SIMEDGE_DIR: /* compute the angle between the two edges */ angle = RAD2DEG(angle_v2v2(e_ext[i].dir, e_ext[indices[idx]].dir)); if( angle > 90.0 ) /* use the smallest angle between the edges */ angle = fabs(angle - 180.0f); if( angle / 90.0 <= thresh ) { BMO_SetFlag(bm, e, EDGE_MARK); cont = 0; } break; case SIMEDGE_FACE: if( e_ext[i].faces == e_ext[indices[idx]].faces ) { BMO_SetFlag(bm, e, EDGE_MARK); cont = 0; } break; case SIMEDGE_FACE_ANGLE: if( e_ext[i].faces == 2 ) { if( e_ext[indices[idx]].faces == 2 ) { if( fabs(e_ext[i].angle - e_ext[indices[idx]].angle) <= thresh ) { BMO_SetFlag(bm, e, EDGE_MARK); cont = 0; } } } else cont = 0; break; case SIMEDGE_CREASE: if (CustomData_has_layer(&bm->edata, CD_CREASE)) { float *c1, *c2; c1 = CustomData_bmesh_get(&bm->edata, e->head.data, CD_CREASE); c2 = CustomData_bmesh_get(&bm->edata, es->head.data, CD_CREASE); if( c1&&c2 && fabs(*c1 - *c2) <= thresh ) { BMO_SetFlag(bm, e, EDGE_MARK); cont = 0; } } break; case SIMEDGE_SEAM: if( BM_TestHFlag(e, BM_SEAM) == BM_TestHFlag(es, BM_SEAM) ) { BMO_SetFlag(bm, e, EDGE_MARK); cont = 0; } break; case SIMEDGE_SHARP: if( BM_TestHFlag(e, BM_SHARP) == BM_TestHFlag(es, BM_SHARP) ) { BMO_SetFlag(bm, e, EDGE_MARK); cont = 0; } break; } } } } MEM_freeN(e_ext); MEM_freeN(indices); /* transfer all marked edges to the output slot */ BMO_Flag_To_Slot(bm, op, "edgeout", EDGE_MARK, BM_EDGE); } /****************************************************************************** ** Similar Vertices ******************************************************************************/ #define VERT_MARK 1 typedef struct tmp_vert_ext { BMVert *v; union { int num_faces; /* adjacent faces */ MDeformVert *dvert; /* deform vertex */ }; } tmp_vert_ext; /* ** select similar vertices: the choices are in the enum in source/blender/bmesh/bmesh_operators.h ** choices are normal, face, vertex group... */ void bmesh_similarverts_exec(BMesh *bm, BMOperator *op) { BMOIter vs_iter; /* selected verts iterator */ BMIter v_iter; /* mesh verts iterator */ BMVert *vs; /* selected vertex */ BMVert *v; /* mesh vertex */ tmp_vert_ext *v_ext = NULL; int *indices = NULL; int num_total = 0, num_sels = 0, i = 0, idx = 0; int type = BMO_Get_Int(op, "type"); float thresh = BMO_Get_Float(op, "thresh"); num_total = BM_Count_Element(bm, BM_VERT); /* iterate through all selected edges and mark them */ BMO_ITER(vs, &vs_iter, bm, op, "verts", BM_VERT) { BMO_SetFlag(bm, vs, VERT_MARK); num_sels++; } /* allocate memory for the selected vertices indices and for all temporary vertices */ indices = (int*)MEM_mallocN(sizeof(int) * num_sels, "vertex indices"); v_ext = (tmp_vert_ext*)MEM_mallocN(sizeof(tmp_vert_ext) * num_total, "vertex extra"); /* loop through all the vertices and fill the vertices/indices structure */ BM_ITER(v, &v_iter, bm, BM_VERTS_OF_MESH, NULL) { v_ext[i].v = v; if (BMO_TestFlag(bm, v, VERT_MARK)) { indices[idx] = i; idx++; } switch( type ) { case SIMVERT_FACE: /* calling BM_Vert_FaceCount every time is time consumming, so call it only once per vertex */ v_ext[i].num_faces = BM_Vert_FaceCount(v); break; case SIMVERT_VGROUP: if( CustomData_has_layer(&(bm->vdata),CD_MDEFORMVERT) ) { v_ext[i].dvert = CustomData_bmesh_get(&bm->vdata, v_ext[i].v->head.data, CD_MDEFORMVERT); } else v_ext[i].dvert = NULL; break; } i++; } /* select the vertices if any */ for( i = 0; i < num_total; i++ ) { v = v_ext[i].v; if( !BMO_TestFlag(bm, v, VERT_MARK) && !BM_TestHFlag(v, BM_HIDDEN) ) { int cont = 1; for( idx = 0; idx < num_sels && cont == 1; idx++ ) { vs = v_ext[indices[idx]].v; switch( type ) { case SIMVERT_NORMAL: /* compare the angle between the normals */ if( RAD2DEG(angle_v2v2(v->no, vs->no) / 180.0 <= thresh )) { BMO_SetFlag(bm, v, VERT_MARK); cont = 0; } break; case SIMVERT_FACE: /* number of adjacent faces */ if( v_ext[i].num_faces == v_ext[indices[idx]].num_faces ) { BMO_SetFlag(bm, v, VERT_MARK); cont = 0; } break; case SIMVERT_VGROUP: if( v_ext[i].dvert != NULL && v_ext[indices[idx]].dvert != NULL ) { int v1, v2; for( v1 = 0; v1 < v_ext[i].dvert->totweight && cont == 1; v1++ ) { for( v2 = 0; v2 < v_ext[indices[idx]].dvert->totweight; v2++ ) { if( v_ext[i].dvert->dw[v1].def_nr == v_ext[indices[idx]].dvert->dw[v2].def_nr ) { BMO_SetFlag(bm, v, VERT_MARK); cont = 0; break; } } } } break; } } } } MEM_freeN(indices); MEM_freeN(v_ext); BMO_Flag_To_Slot(bm, op, "vertout", VERT_MARK, BM_VERT); } /****************************************************************************** ** Cycle UVs for a face ******************************************************************************/ void bmesh_rotateuvs_exec(BMesh *bm, BMOperator *op) { BMOIter fs_iter; /* selected faces iterator */ BMFace *fs; /* current face */ BMIter l_iter; /* iteration loop */ // int n; int dir = BMO_Get_Int(op, "dir"); BMO_ITER(fs, &fs_iter, bm, op, "faces", BM_FACE) { if( CustomData_has_layer(&(bm->ldata), CD_MLOOPUV) ) { if( dir == DIRECTION_CW ) { /* same loops direction */ BMLoop *lf; /* current face loops */ MLoopUV *f_luv; /* first face loop uv */ float p_uv[2]; /* previous uvs */ float t_uv[2]; /* tmp uvs */ int n = 0; BM_ITER(lf, &l_iter, bm, BM_LOOPS_OF_FACE, fs) { /* current loop uv is the previous loop uv */ MLoopUV *luv = CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPUV); if( n == 0 ) { f_luv = luv; p_uv[0] = luv->uv[0]; p_uv[1] = luv->uv[1]; } else { t_uv[0] = luv->uv[0]; t_uv[1] = luv->uv[1]; luv->uv[0] = p_uv[0]; luv->uv[1] = p_uv[1]; p_uv[0] = t_uv[0]; p_uv[1] = t_uv[1]; } n++; } f_luv->uv[0] = p_uv[0]; f_luv->uv[1] = p_uv[1]; } else if( dir == DIRECTION_CCW ) { /* counter loop direction */ BMLoop *lf; /* current face loops */ MLoopUV *p_luv; /*previous loop uv */ MLoopUV *luv; float t_uv[2]; /* current uvs */ int n = 0; BM_ITER(lf, &l_iter, bm, BM_LOOPS_OF_FACE, fs) { /* previous loop uv is the current loop uv */ luv = CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPUV); if( n == 0 ) { p_luv = luv; t_uv[0] = luv->uv[0]; t_uv[1] = luv->uv[1]; } else { p_luv->uv[0] = luv->uv[0]; p_luv->uv[1] = luv->uv[1]; p_luv = luv; } n++; } luv->uv[0] = t_uv[0]; luv->uv[1] = t_uv[1]; } } } } /****************************************************************************** ** Reverse UVs for a face ******************************************************************************/ void bmesh_reverseuvs_exec(BMesh *bm, BMOperator *op) { BMOIter fs_iter; /* selected faces iterator */ BMFace *fs; /* current face */ BMIter l_iter; /* iteration loop */ BLI_array_declare(uvs); float (*uvs)[2] = NULL; BMO_ITER(fs, &fs_iter, bm, op, "faces", BM_FACE) { if( CustomData_has_layer(&(bm->ldata), CD_MLOOPUV) ) { BMLoop *lf; /* current face loops */ int i = 0; BLI_array_empty(uvs); BM_ITER(lf, &l_iter, bm, BM_LOOPS_OF_FACE, fs) { MLoopUV *luv = CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPUV); /* current loop uv is the previous loop uv */ BLI_array_growone(uvs); uvs[i][0] = luv->uv[0]; uvs[i][1] = luv->uv[1]; i++; } /* now that we have the uvs in the array, reverse! */ i = 0; BM_ITER(lf, &l_iter, bm, BM_LOOPS_OF_FACE, fs) { /* current loop uv is the previous loop uv */ MLoopUV *luv = CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPUV); luv->uv[0] = uvs[(fs->len - i - 1)][0]; luv->uv[1] = uvs[(fs->len - i - 1)][1]; i++; } } } BLI_array_free(uvs); } /****************************************************************************** ** Cycle colors for a face ******************************************************************************/ void bmesh_rotatecolors_exec(BMesh *bm, BMOperator *op) { BMOIter fs_iter; /* selected faces iterator */ BMFace *fs; /* current face */ BMIter l_iter; /* iteration loop */ // int n; int dir = BMO_Get_Int(op, "dir"); BMO_ITER(fs, &fs_iter, bm, op, "faces", BM_FACE) { if( CustomData_has_layer(&(bm->ldata), CD_MLOOPCOL) ) { if( dir == DIRECTION_CW ) { /* same loops direction */ BMLoop *lf; /* current face loops */ MLoopCol *f_lcol; /* first face loop color */ MLoopCol p_col; /* previous color */ MLoopCol t_col; /* tmp color */ int n = 0; BM_ITER(lf, &l_iter, bm, BM_LOOPS_OF_FACE, fs) { /* current loop color is the previous loop color */ MLoopCol *luv = CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPCOL); if( n == 0 ) { f_lcol = luv; p_col = *luv; } else { t_col = *luv; *luv = p_col; p_col = t_col; } n++; } *f_lcol = p_col; } else if( dir == DIRECTION_CCW ) { /* counter loop direction */ BMLoop *lf; /* current face loops */ MLoopCol *p_lcol; /*previous loop color */ MLoopCol *lcol; MLoopCol t_col; /* current color */ int n = 0; BM_ITER(lf, &l_iter, bm, BM_LOOPS_OF_FACE, fs) { /* previous loop color is the current loop color */ lcol = CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPCOL); if( n == 0 ) { p_lcol = lcol; t_col = *lcol; } else { *p_lcol = *lcol; p_lcol = lcol; } n++; } *lcol = t_col; } } } } /****************************************************************************** ** Reverse colors for a face ******************************************************************************/ void bmesh_reversecolors_exec(BMesh *bm, BMOperator *op) { BMOIter fs_iter; /* selected faces iterator */ BMFace *fs; /* current face */ BMIter l_iter; /* iteration loop */ BLI_array_declare(cols); MLoopCol *cols = NULL; BMO_ITER(fs, &fs_iter, bm, op, "faces", BM_FACE) { if( CustomData_has_layer(&(bm->ldata), CD_MLOOPCOL) ) { BMLoop *lf; /* current face loops */ int i = 0; BLI_array_empty(cols); BM_ITER(lf, &l_iter, bm, BM_LOOPS_OF_FACE, fs) { MLoopCol *lcol = CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPCOL); /* current loop uv is the previous loop color */ BLI_array_growone(cols); cols[i] = *lcol; i++; } /* now that we have the uvs in the array, reverse! */ i = 0; BM_ITER(lf, &l_iter, bm, BM_LOOPS_OF_FACE, fs) { /* current loop uv is the previous loop color */ MLoopCol *lcol = CustomData_bmesh_get(&bm->ldata, lf->head.data, CD_MLOOPCOL); *lcol = cols[(fs->len - i - 1)]; i++; } } } BLI_array_free(cols); } /****************************************************************************** ** shortest vertex path select ******************************************************************************/ typedef struct element_node { BMVert *v; /* vertex */ BMVert *parent; /* node parent id */ float weight; /* node weight */ HeapNode *hn; /* heap node */ } element_node; void bmesh_vertexshortestpath_exec(BMesh *bm, BMOperator *op) { BMOIter vs_iter /* , vs2_iter */; /* selected verts iterator */ BMIter v_iter; /* mesh verts iterator */ BMVert *vs, *sv, *ev; /* starting vertex, ending vertex */ BMVert *v; /* mesh vertex */ Heap *h = NULL; element_node *vert_list = NULL; int num_total = 0 /*, num_sels = 0 */, i = 0; int type = BMO_Get_Int(op, "type"); BMO_ITER(vs, &vs_iter, bm, op, "startv", BM_VERT) sv = vs; BMO_ITER(vs, &vs_iter, bm, op, "endv", BM_VERT) ev = vs; num_total = BM_Count_Element(bm, BM_VERT); /* allocate memory for the nodes */ vert_list = (element_node*)MEM_mallocN(sizeof(element_node) * num_total, "vertex nodes"); /* iterate through all the mesh vertices */ /* loop through all the vertices and fill the vertices/indices structure */ i = 0; BM_ITER(v, &v_iter, bm, BM_VERTS_OF_MESH, NULL) { vert_list[i].v = v; vert_list[i].parent = NULL; vert_list[i].weight = FLT_MAX; BM_SetIndex(v, i); i++; } /* ** we now have everything we need, start Dijkstra path finding algorithm */ /* set the distance/weight of the start vertex to 0 */ vert_list[BM_GetIndex(sv)].weight = 0.0f; h = BLI_heap_new(); for( i = 0; i < num_total; i++ ) vert_list[i].hn = BLI_heap_insert(h, vert_list[i].weight, vert_list[i].v); while( !BLI_heap_empty(h) ) { BMEdge *e; BMIter e_i; float v_weight; /* take the vertex with the lowest weight out of the heap */ BMVert *v = (BMVert*)BLI_heap_popmin(h); if( vert_list[BM_GetIndex(v)].weight == FLT_MAX ) /* this means that there is no path */ break; v_weight = vert_list[BM_GetIndex(v)].weight; BM_ITER(e, &e_i, bm, BM_EDGES_OF_VERT, v) { BMVert *u; float e_weight = v_weight; if( type == VPATH_SELECT_EDGE_LENGTH ) e_weight += len_v3v3(e->v1->co, e->v2->co); else e_weight += 1.0f; u = ( e->v1 == v ) ? e->v2 : e->v1; if( e_weight < vert_list[BM_GetIndex(u)].weight ) { /* is this path shorter ? */ /* add it if so */ vert_list[BM_GetIndex(u)].parent = v; vert_list[BM_GetIndex(u)].weight = e_weight; /* we should do a heap update node function!!! :-/ */ BLI_heap_remove(h, vert_list[BM_GetIndex(u)].hn); BLI_heap_insert(h, e_weight, u); } } } /* now we trace the path (if it exists) */ v = ev; while( vert_list[BM_GetIndex(v)].parent != NULL ) { BMO_SetFlag(bm, v, VERT_MARK); v = vert_list[BM_GetIndex(v)].parent; } BLI_heap_free(h, NULL); MEM_freeN(vert_list); BMO_Flag_To_Slot(bm, op, "vertout", VERT_MARK, BM_VERT); }