/* * \$Id\$ * * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * The Original Code is: some of this file. * * ***** END GPL LICENSE BLOCK ***** * */ /** \file blender/blenlib/intern/math_rotation.c * \ingroup bli */ #include #include "BLI_math.h" /******************************** Quaternions ********************************/ /* used to test is a quat is not normalized */ #define QUAT_EPSILON 0.0001 /* convenience, avoids setting Y axis everywhere */ void unit_axis_angle(float axis[3], float *angle) { axis[0]= 0.0f; axis[1]= 1.0f; axis[2]= 0.0f; *angle= 0.0f; } void unit_qt(float q[4]) { q[0]= 1.0f; q[1]= q[2]= q[3]= 0.0f; } void copy_qt_qt(float *q1, const float *q2) { q1[0]= q2[0]; q1[1]= q2[1]; q1[2]= q2[2]; q1[3]= q2[3]; } int is_zero_qt(float *q) { return (q[0] == 0 && q[1] == 0 && q[2] == 0 && q[3] == 0); } void mul_qt_qtqt(float *q, const float *q1, const float *q2) { float t0,t1,t2; t0= q1[0]*q2[0]-q1[1]*q2[1]-q1[2]*q2[2]-q1[3]*q2[3]; t1= q1[0]*q2[1]+q1[1]*q2[0]+q1[2]*q2[3]-q1[3]*q2[2]; t2= q1[0]*q2[2]+q1[2]*q2[0]+q1[3]*q2[1]-q1[1]*q2[3]; q[3]= q1[0]*q2[3]+q1[3]*q2[0]+q1[1]*q2[2]-q1[2]*q2[1]; q[0]=t0; q[1]=t1; q[2]=t2; } /* Assumes a unit quaternion */ void mul_qt_v3(const float *q, float *v) { float t0, t1, t2; t0= -q[1]*v[0]-q[2]*v[1]-q[3]*v[2]; t1= q[0]*v[0]+q[2]*v[2]-q[3]*v[1]; t2= q[0]*v[1]+q[3]*v[0]-q[1]*v[2]; v[2]= q[0]*v[2]+q[1]*v[1]-q[2]*v[0]; v[0]=t1; v[1]=t2; t1= t0*-q[1]+v[0]*q[0]-v[1]*q[3]+v[2]*q[2]; t2= t0*-q[2]+v[1]*q[0]-v[2]*q[1]+v[0]*q[3]; v[2]= t0*-q[3]+v[2]*q[0]-v[0]*q[2]+v[1]*q[1]; v[0]=t1; v[1]=t2; } void conjugate_qt(float *q) { q[1] = -q[1]; q[2] = -q[2]; q[3] = -q[3]; } float dot_qtqt(const float q1[4], const float q2[4]) { return q1[0]*q2[0] + q1[1]*q2[1] + q1[2]*q2[2] + q1[3]*q2[3]; } void invert_qt(float *q) { float f = dot_qtqt(q, q); if (f == 0.0f) return; conjugate_qt(q); mul_qt_fl(q, 1.0f/f); } void invert_qt_qt(float *q1, const float *q2) { copy_qt_qt(q1, q2); invert_qt(q1); } /* simple mult */ void mul_qt_fl(float *q, const float f) { q[0] *= f; q[1] *= f; q[2] *= f; q[3] *= f; } void sub_qt_qtqt(float q[4], const float q1[4], const float q2[4]) { float nq2[4]; nq2[0]= -q2[0]; nq2[1]= q2[1]; nq2[2]= q2[2]; nq2[3]= q2[3]; mul_qt_qtqt(q, q1, nq2); } /* angular mult factor */ void mul_fac_qt_fl(float *q, const float fac) { float angle= fac*saacos(q[0]); /* quat[0]= cos(0.5*angle), but now the 0.5 and 2.0 rule out */ float co= (float)cos(angle); float si= (float)sin(angle); q[0]= co; normalize_v3(q+1); mul_v3_fl(q+1, si); } /* skip error check, currently only needed by mat3_to_quat_is_ok */ static void quat_to_mat3_no_error(float m[][3], const float q[4]) { double q0, q1, q2, q3, qda,qdb,qdc,qaa,qab,qac,qbb,qbc,qcc; q0= M_SQRT2 * (double)q[0]; q1= M_SQRT2 * (double)q[1]; q2= M_SQRT2 * (double)q[2]; q3= M_SQRT2 * (double)q[3]; qda= q0*q1; qdb= q0*q2; qdc= q0*q3; qaa= q1*q1; qab= q1*q2; qac= q1*q3; qbb= q2*q2; qbc= q2*q3; qcc= q3*q3; m[0][0]= (float)(1.0-qbb-qcc); m[0][1]= (float)(qdc+qab); m[0][2]= (float)(-qdb+qac); m[1][0]= (float)(-qdc+qab); m[1][1]= (float)(1.0-qaa-qcc); m[1][2]= (float)(qda+qbc); m[2][0]= (float)(qdb+qac); m[2][1]= (float)(-qda+qbc); m[2][2]= (float)(1.0-qaa-qbb); } void quat_to_mat3(float m[][3], const float q[4]) { #ifdef DEBUG float f; if(!((f=dot_qtqt(q, q))==0.0f || (fabsf(f-1.0f) < (float)QUAT_EPSILON))) { fprintf(stderr, "Warning! quat_to_mat3() called with non-normalized: size %.8f *** report a bug ***\n", f); } #endif quat_to_mat3_no_error(m, q); } void quat_to_mat4(float m[][4], const float q[4]) { double q0, q1, q2, q3, qda,qdb,qdc,qaa,qab,qac,qbb,qbc,qcc; #ifdef DEBUG if(!((q0=dot_qtqt(q, q))==0.0f || (fabsf(q0-1.0f) < (float)QUAT_EPSILON))) { fprintf(stderr, "Warning! quat_to_mat4() called with non-normalized: size %.8f *** report a bug ***\n", (float)q0); } #endif q0= M_SQRT2 * (double)q[0]; q1= M_SQRT2 * (double)q[1]; q2= M_SQRT2 * (double)q[2]; q3= M_SQRT2 * (double)q[3]; qda= q0*q1; qdb= q0*q2; qdc= q0*q3; qaa= q1*q1; qab= q1*q2; qac= q1*q3; qbb= q2*q2; qbc= q2*q3; qcc= q3*q3; m[0][0]= (float)(1.0-qbb-qcc); m[0][1]= (float)(qdc+qab); m[0][2]= (float)(-qdb+qac); m[0][3]= 0.0f; m[1][0]= (float)(-qdc+qab); m[1][1]= (float)(1.0-qaa-qcc); m[1][2]= (float)(qda+qbc); m[1][3]= 0.0f; m[2][0]= (float)(qdb+qac); m[2][1]= (float)(-qda+qbc); m[2][2]= (float)(1.0-qaa-qbb); m[2][3]= 0.0f; m[3][0]= m[3][1]= m[3][2]= 0.0f; m[3][3]= 1.0f; } void mat3_to_quat(float *q, float wmat[][3]) { double tr, s; float mat[3][3]; /* work on a copy */ copy_m3_m3(mat, wmat); normalize_m3(mat); /* this is needed AND a NormalQuat in the end */ tr= 0.25* (double)(1.0f+mat[0][0]+mat[1][1]+mat[2][2]); if(tr>(double)FLT_EPSILON) { s= sqrt(tr); q[0]= (float)s; s= 1.0/(4.0*s); q[1]= (float)((mat[1][2]-mat[2][1])*s); q[2]= (float)((mat[2][0]-mat[0][2])*s); q[3]= (float)((mat[0][1]-mat[1][0])*s); } else { if(mat[0][0] > mat[1][1] && mat[0][0] > mat[2][2]) { s= 2.0*sqrtf(1.0f + mat[0][0] - mat[1][1] - mat[2][2]); q[1]= (float)(0.25*s); s= 1.0/s; q[0]= (float)((mat[2][1] - mat[1][2])*s); q[2]= (float)((mat[1][0] + mat[0][1])*s); q[3]= (float)((mat[2][0] + mat[0][2])*s); } else if(mat[1][1] > mat[2][2]) { s= 2.0*sqrtf(1.0f + mat[1][1] - mat[0][0] - mat[2][2]); q[2]= (float)(0.25*s); s= 1.0/s; q[0]= (float)((mat[2][0] - mat[0][2])*s); q[1]= (float)((mat[1][0] + mat[0][1])*s); q[3]= (float)((mat[2][1] + mat[1][2])*s); } else { s= 2.0*sqrtf(1.0 + mat[2][2] - mat[0][0] - mat[1][1]); q[3]= (float)(0.25*s); s= 1.0/s; q[0]= (float)((mat[1][0] - mat[0][1])*s); q[1]= (float)((mat[2][0] + mat[0][2])*s); q[2]= (float)((mat[2][1] + mat[1][2])*s); } } normalize_qt(q); } void mat4_to_quat(float *q, float m[][4]) { float mat[3][3]; copy_m3_m4(mat, m); mat3_to_quat(q,mat); } void mat3_to_quat_is_ok(float q[4], float wmat[3][3]) { float mat[3][3], matr[3][3], matn[3][3], q1[4], q2[4], angle, si, co, nor[3]; /* work on a copy */ copy_m3_m3(mat, wmat); normalize_m3(mat); /* rotate z-axis of matrix to z-axis */ nor[0] = mat[2][1]; /* cross product with (0,0,1) */ nor[1] = -mat[2][0]; nor[2] = 0.0; normalize_v3(nor); co= mat[2][2]; angle= 0.5f*saacos(co); co= (float)cos(angle); si= (float)sin(angle); q1[0]= co; q1[1]= -nor[0]*si; /* negative here, but why? */ q1[2]= -nor[1]*si; q1[3]= -nor[2]*si; /* rotate back x-axis from mat, using inverse q1 */ quat_to_mat3_no_error( matr,q1); invert_m3_m3(matn, matr); mul_m3_v3(matn, mat[0]); /* and align x-axes */ angle= (float)(0.5*atan2(mat[0][1], mat[0][0])); co= (float)cos(angle); si= (float)sin(angle); q2[0]= co; q2[1]= 0.0f; q2[2]= 0.0f; q2[3]= si; mul_qt_qtqt(q, q1, q2); } float normalize_qt(float *q) { float len; len= (float)sqrt(dot_qtqt(q, q)); if(len!=0.0f) { mul_qt_fl(q, 1.0f/len); } else { q[1]= 1.0f; q[0]= q[2]= q[3]= 0.0f; } return len; } float normalize_qt_qt(float r[4], const float q[4]) { copy_qt_qt(r, q); return normalize_qt(r); } /* note: expects vectors to be normalized */ void rotation_between_vecs_to_quat(float *q, const float v1[3], const float v2[3]) { float axis[3]; float angle; cross_v3_v3v3(axis, v1, v2); angle = angle_normalized_v3v3(v1, v2); axis_angle_to_quat(q, axis, angle); } void rotation_between_quats_to_quat(float *q, const float q1[4], const float q2[4]) { float tquat[4]; double dot = 0.0f; int x; copy_qt_qt(tquat, q1); conjugate_qt(tquat); dot = 1.0f / dot_qtqt(tquat, tquat); for(x = 0; x < 4; x++) tquat[x] *= dot; mul_qt_qtqt(q, tquat, q2); } void vec_to_quat(float q[4], const float vec[3], short axis, const short upflag) { float q2[4], nor[3], *fp, mat[3][3], angle, si, co, x2, y2, z2, len1; assert(axis >= 0 && axis <= 5); assert(upflag >= 0 && upflag <= 2); /* first rotate to axis */ if(axis>2) { x2= vec[0] ; y2= vec[1] ; z2= vec[2]; axis-= 3; } else { x2= -vec[0] ; y2= -vec[1] ; z2= -vec[2]; } q[0]=1.0; q[1]=q[2]=q[3]= 0.0; len1= (float)sqrt(x2*x2+y2*y2+z2*z2); if(len1 == 0.0f) return; /* nasty! I need a good routine for this... * problem is a rotation of an Y axis to the negative Y-axis for example. */ if(axis==0) { /* x-axis */ nor[0]= 0.0; nor[1]= -z2; nor[2]= y2; if(fabs(y2)+fabs(z2)<0.0001) nor[1]= 1.0; co= x2; } else if(axis==1) { /* y-axis */ nor[0]= z2; nor[1]= 0.0; nor[2]= -x2; if(fabs(x2)+fabs(z2)<0.0001) nor[2]= 1.0; co= y2; } else { /* z-axis */ nor[0]= -y2; nor[1]= x2; nor[2]= 0.0; if(fabs(x2)+fabs(y2)<0.0001) nor[0]= 1.0; co= z2; } co/= len1; normalize_v3(nor); angle= 0.5f*saacos(co); si= (float)sin(angle); q[0]= (float)cos(angle); q[1]= nor[0]*si; q[2]= nor[1]*si; q[3]= nor[2]*si; if(axis!=upflag) { quat_to_mat3(mat,q); fp= mat[2]; if(axis==0) { if(upflag==1) angle= (float)(0.5*atan2(fp[2], fp[1])); else angle= (float)(-0.5*atan2(fp[1], fp[2])); } else if(axis==1) { if(upflag==0) angle= (float)(-0.5*atan2(fp[2], fp[0])); else angle= (float)(0.5*atan2(fp[0], fp[2])); } else { if(upflag==0) angle= (float)(0.5*atan2(-fp[1], -fp[0])); else angle= (float)(-0.5*atan2(-fp[0], -fp[1])); } co= (float)cos(angle); si= (float)(sin(angle)/len1); q2[0]= co; q2[1]= x2*si; q2[2]= y2*si; q2[3]= z2*si; mul_qt_qtqt(q,q2,q); } } #if 0 /* A & M Watt, Advanced animation and rendering techniques, 1992 ACM press */ void QuatInterpolW(float *result, float *quat1, float *quat2, float t) { float omega, cosom, sinom, sc1, sc2; cosom = quat1[0]*quat2[0] + quat1[1]*quat2[1] + quat1[2]*quat2[2] + quat1[3]*quat2[3] ; /* rotate around shortest angle */ if ((1.0f + cosom) > 0.0001f) { if ((1.0f - cosom) > 0.0001f) { omega = (float)acos(cosom); sinom = (float)sin(omega); sc1 = (float)sin((1.0 - t) * omega) / sinom; sc2 = (float)sin(t * omega) / sinom; } else { sc1 = 1.0f - t; sc2 = t; } result[0] = sc1*quat1[0] + sc2*quat2[0]; result[1] = sc1*quat1[1] + sc2*quat2[1]; result[2] = sc1*quat1[2] + sc2*quat2[2]; result[3] = sc1*quat1[3] + sc2*quat2[3]; } else { result[0] = quat2[3]; result[1] = -quat2[2]; result[2] = quat2[1]; result[3] = -quat2[0]; sc1 = (float)sin((1.0 - t)*M_PI_2); sc2 = (float)sin(t*M_PI_2); result[0] = sc1*quat1[0] + sc2*result[0]; result[1] = sc1*quat1[1] + sc2*result[1]; result[2] = sc1*quat1[2] + sc2*result[2]; result[3] = sc1*quat1[3] + sc2*result[3]; } } #endif void interp_qt_qtqt(float result[4], const float quat1[4], const float quat2[4], const float t) { float quat[4], omega, cosom, sinom, sc1, sc2; cosom = quat1[0]*quat2[0] + quat1[1]*quat2[1] + quat1[2]*quat2[2] + quat1[3]*quat2[3] ; /* rotate around shortest angle */ if (cosom < 0.0f) { cosom = -cosom; quat[0]= -quat1[0]; quat[1]= -quat1[1]; quat[2]= -quat1[2]; quat[3]= -quat1[3]; } else { quat[0]= quat1[0]; quat[1]= quat1[1]; quat[2]= quat1[2]; quat[3]= quat1[3]; } if ((1.0f - cosom) > 0.0001f) { omega = (float)acos(cosom); sinom = (float)sin(omega); sc1 = (float)sin((1 - t) * omega) / sinom; sc2 = (float)sin(t * omega) / sinom; } else { sc1= 1.0f - t; sc2= t; } result[0] = sc1 * quat[0] + sc2 * quat2[0]; result[1] = sc1 * quat[1] + sc2 * quat2[1]; result[2] = sc1 * quat[2] + sc2 * quat2[2]; result[3] = sc1 * quat[3] + sc2 * quat2[3]; } void add_qt_qtqt(float result[4], const float quat1[4], const float quat2[4], const float t) { result[0]= quat1[0] + t*quat2[0]; result[1]= quat1[1] + t*quat2[1]; result[2]= quat1[2] + t*quat2[2]; result[3]= quat1[3] + t*quat2[3]; } void tri_to_quat(float quat[4], const float v1[3], const float v2[3], const float v3[3]) { /* imaginary x-axis, y-axis triangle is being rotated */ float vec[3], q1[4], q2[4], n[3], si, co, angle, mat[3][3], imat[3][3]; /* move z-axis to face-normal */ normal_tri_v3(vec,v1, v2, v3); n[0]= vec[1]; n[1]= -vec[0]; n[2]= 0.0f; normalize_v3(n); if(n[0]==0.0f && n[1]==0.0f) n[0]= 1.0f; angle= -0.5f*(float)saacos(vec[2]); co= (float)cos(angle); si= (float)sin(angle); q1[0]= co; q1[1]= n[0]*si; q1[2]= n[1]*si; q1[3]= 0.0f; /* rotate back line v1-v2 */ quat_to_mat3(mat,q1); invert_m3_m3(imat, mat); sub_v3_v3v3(vec, v2, v1); mul_m3_v3(imat, vec); /* what angle has this line with x-axis? */ vec[2]= 0.0f; normalize_v3(vec); angle= (float)(0.5*atan2(vec[1], vec[0])); co= (float)cos(angle); si= (float)sin(angle); q2[0]= co; q2[1]= 0.0f; q2[2]= 0.0f; q2[3]= si; mul_qt_qtqt(quat, q1, q2); } void print_qt(const char *str, const float q[4]) { printf("%s: %.3f %.3f %.3f %.3f\n", str, q[0], q[1], q[2], q[3]); } /******************************** Axis Angle *********************************/ /* Axis angle to Quaternions */ void axis_angle_to_quat(float q[4], const float axis[3], float angle) { float nor[3]; float si; if(normalize_v3_v3(nor, axis) == 0.0f) { unit_qt(q); return; } angle /= 2; si = (float)sin(angle); q[0] = (float)cos(angle); q[1] = nor[0] * si; q[2] = nor[1] * si; q[3] = nor[2] * si; } /* Quaternions to Axis Angle */ void quat_to_axis_angle(float axis[3], float *angle, const float q[4]) { float ha, si; #ifdef DEBUG if(!((ha=dot_qtqt(q, q))==0.0f || (fabsf(ha-1.0f) < (float)QUAT_EPSILON))) { fprintf(stderr, "Warning! quat_to_axis_angle() called with non-normalized: size %.8f *** report a bug ***\n", ha); } #endif /* calculate angle/2, and sin(angle/2) */ ha= (float)acos(q[0]); si= (float)sin(ha); /* from half-angle to angle */ *angle= ha * 2; /* prevent division by zero for axis conversion */ if (fabs(si) < 0.0005) si= 1.0f; axis[0]= q[1] / si; axis[1]= q[2] / si; axis[2]= q[3] / si; } /* Axis Angle to Euler Rotation */ void axis_angle_to_eulO(float eul[3], const short order, const float axis[3], const float angle) { float q[4]; /* use quaternions as intermediate representation for now... */ axis_angle_to_quat(q, axis, angle); quat_to_eulO(eul, order,q); } /* Euler Rotation to Axis Angle */ void eulO_to_axis_angle(float axis[3], float *angle, const float eul[3], const short order) { float q[4]; /* use quaternions as intermediate representation for now... */ eulO_to_quat(q,eul, order); quat_to_axis_angle(axis, angle,q); } /* axis angle to 3x3 matrix - safer version (normalisation of axis performed) */ void axis_angle_to_mat3(float mat[3][3], const float axis[3], const float angle) { float nor[3], nsi[3], co, si, ico; /* normalise the axis first (to remove unwanted scaling) */ if(normalize_v3_v3(nor, axis) == 0.0f) { unit_m3(mat); return; } /* now convert this to a 3x3 matrix */ co= (float)cos(angle); si= (float)sin(angle); ico= (1.0f - co); nsi[0]= nor[0]*si; nsi[1]= nor[1]*si; nsi[2]= nor[2]*si; mat[0][0] = ((nor[0] * nor[0]) * ico) + co; mat[0][1] = ((nor[0] * nor[1]) * ico) + nsi[2]; mat[0][2] = ((nor[0] * nor[2]) * ico) - nsi[1]; mat[1][0] = ((nor[0] * nor[1]) * ico) - nsi[2]; mat[1][1] = ((nor[1] * nor[1]) * ico) + co; mat[1][2] = ((nor[1] * nor[2]) * ico) + nsi[0]; mat[2][0] = ((nor[0] * nor[2]) * ico) + nsi[1]; mat[2][1] = ((nor[1] * nor[2]) * ico) - nsi[0]; mat[2][2] = ((nor[2] * nor[2]) * ico) + co; } /* axis angle to 4x4 matrix - safer version (normalisation of axis performed) */ void axis_angle_to_mat4(float mat[4][4], const float axis[3], const float angle) { float tmat[3][3]; axis_angle_to_mat3(tmat,axis, angle); unit_m4(mat); copy_m4_m3(mat, tmat); } /* 3x3 matrix to axis angle (see Mat4ToVecRot too) */ void mat3_to_axis_angle(float axis[3], float *angle,float mat[3][3]) { float q[4]; /* use quaternions as intermediate representation */ // TODO: it would be nicer to go straight there... mat3_to_quat(q,mat); quat_to_axis_angle(axis, angle,q); } /* 4x4 matrix to axis angle (see Mat4ToVecRot too) */ void mat4_to_axis_angle(float axis[3], float *angle,float mat[4][4]) { float q[4]; /* use quaternions as intermediate representation */ // TODO: it would be nicer to go straight there... mat4_to_quat(q,mat); quat_to_axis_angle(axis, angle,q); } /****************************** Vector/Rotation ******************************/ /* TODO: the following calls should probably be depreceated sometime */ /* 3x3 matrix to axis angle */ void mat3_to_vec_rot(float axis[3], float *angle,float mat[3][3]) { float q[4]; /* use quaternions as intermediate representation */ // TODO: it would be nicer to go straight there... mat3_to_quat(q,mat); quat_to_axis_angle(axis, angle,q); } /* 4x4 matrix to axis angle */ void mat4_to_vec_rot(float axis[3], float *angle,float mat[4][4]) { float q[4]; /* use quaternions as intermediate representation */ // TODO: it would be nicer to go straight there... mat4_to_quat(q,mat); quat_to_axis_angle(axis, angle,q); } /* axis angle to 3x3 matrix */ void vec_rot_to_mat3(float mat[][3], const float vec[3], const float phi) { /* rotation of phi radials around vec */ float vx, vx2, vy, vy2, vz, vz2, co, si; vx= vec[0]; vy= vec[1]; vz= vec[2]; vx2= vx*vx; vy2= vy*vy; vz2= vz*vz; co= (float)cos(phi); si= (float)sin(phi); mat[0][0]= vx2+co*(1.0f-vx2); mat[0][1]= vx*vy*(1.0f-co)+vz*si; mat[0][2]= vz*vx*(1.0f-co)-vy*si; mat[1][0]= vx*vy*(1.0f-co)-vz*si; mat[1][1]= vy2+co*(1.0f-vy2); mat[1][2]= vy*vz*(1.0f-co)+vx*si; mat[2][0]= vz*vx*(1.0f-co)+vy*si; mat[2][1]= vy*vz*(1.0f-co)-vx*si; mat[2][2]= vz2+co*(1.0f-vz2); } /* axis angle to 4x4 matrix */ void vec_rot_to_mat4(float mat[][4], const float vec[3], const float phi) { float tmat[3][3]; vec_rot_to_mat3(tmat,vec, phi); unit_m4(mat); copy_m4_m3(mat, tmat); } /* axis angle to quaternion */ void vec_rot_to_quat(float *quat, const float vec[3], const float phi) { /* rotation of phi radials around vec */ float si; quat[1]= vec[0]; quat[2]= vec[1]; quat[3]= vec[2]; if(normalize_v3(quat+1) == 0.0f) { unit_qt(quat); } else { quat[0]= (float)cos((double)phi/2.0); si= (float)sin((double)phi/2.0); quat[1] *= si; quat[2] *= si; quat[3] *= si; } } /******************************** XYZ Eulers *********************************/ /* XYZ order */ void eul_to_mat3(float mat[][3], const float eul[3]) { double ci, cj, ch, si, sj, sh, cc, cs, sc, ss; ci = cos(eul[0]); cj = cos(eul[1]); ch = cos(eul[2]); si = sin(eul[0]); sj = sin(eul[1]); sh = sin(eul[2]); cc = ci*ch; cs = ci*sh; sc = si*ch; ss = si*sh; mat[0][0] = (float)(cj*ch); mat[1][0] = (float)(sj*sc-cs); mat[2][0] = (float)(sj*cc+ss); mat[0][1] = (float)(cj*sh); mat[1][1] = (float)(sj*ss+cc); mat[2][1] = (float)(sj*cs-sc); mat[0][2] = (float)-sj; mat[1][2] = (float)(cj*si); mat[2][2] = (float)(cj*ci); } /* XYZ order */ void eul_to_mat4(float mat[][4], const float eul[3]) { double ci, cj, ch, si, sj, sh, cc, cs, sc, ss; ci = cos(eul[0]); cj = cos(eul[1]); ch = cos(eul[2]); si = sin(eul[0]); sj = sin(eul[1]); sh = sin(eul[2]); cc = ci*ch; cs = ci*sh; sc = si*ch; ss = si*sh; mat[0][0] = (float)(cj*ch); mat[1][0] = (float)(sj*sc-cs); mat[2][0] = (float)(sj*cc+ss); mat[0][1] = (float)(cj*sh); mat[1][1] = (float)(sj*ss+cc); mat[2][1] = (float)(sj*cs-sc); mat[0][2] = (float)-sj; mat[1][2] = (float)(cj*si); mat[2][2] = (float)(cj*ci); mat[3][0]= mat[3][1]= mat[3][2]= mat[0][3]= mat[1][3]= mat[2][3]= 0.0f; mat[3][3]= 1.0f; } /* returns two euler calculation methods, so we can pick the best */ /* XYZ order */ static void mat3_to_eul2(float tmat[][3], float eul1[3], float eul2[3]) { float cy, quat[4], mat[3][3]; mat3_to_quat(quat,tmat); quat_to_mat3(mat,quat); copy_m3_m3(mat, tmat); normalize_m3(mat); cy = (float)sqrt(mat[0][0]*mat[0][0] + mat[0][1]*mat[0][1]); if (cy > 16.0f*FLT_EPSILON) { eul1[0] = (float)atan2(mat[1][2], mat[2][2]); eul1[1] = (float)atan2(-mat[0][2], cy); eul1[2] = (float)atan2(mat[0][1], mat[0][0]); eul2[0] = (float)atan2(-mat[1][2], -mat[2][2]); eul2[1] = (float)atan2(-mat[0][2], -cy); eul2[2] = (float)atan2(-mat[0][1], -mat[0][0]); } else { eul1[0] = (float)atan2(-mat[2][1], mat[1][1]); eul1[1] = (float)atan2(-mat[0][2], cy); eul1[2] = 0.0f; copy_v3_v3(eul2, eul1); } } /* XYZ order */ void mat3_to_eul(float *eul,float tmat[][3]) { float eul1[3], eul2[3]; mat3_to_eul2(tmat, eul1, eul2); /* return best, which is just the one with lowest values it in */ if(fabs(eul1[0])+fabs(eul1[1])+fabs(eul1[2]) > fabs(eul2[0])+fabs(eul2[1])+fabs(eul2[2])) { copy_v3_v3(eul, eul2); } else { copy_v3_v3(eul, eul1); } } /* XYZ order */ void mat4_to_eul(float *eul,float tmat[][4]) { float tempMat[3][3]; copy_m3_m4(tempMat, tmat); normalize_m3(tempMat); mat3_to_eul(eul,tempMat); } /* XYZ order */ void quat_to_eul(float *eul, const float quat[4]) { float mat[3][3]; quat_to_mat3(mat,quat); mat3_to_eul(eul,mat); } /* XYZ order */ void eul_to_quat(float *quat, const float eul[3]) { float ti, tj, th, ci, cj, ch, si, sj, sh, cc, cs, sc, ss; ti = eul[0]*0.5f; tj = eul[1]*0.5f; th = eul[2]*0.5f; ci = (float)cos(ti); cj = (float)cos(tj); ch = (float)cos(th); si = (float)sin(ti); sj = (float)sin(tj); sh = (float)sin(th); cc = ci*ch; cs = ci*sh; sc = si*ch; ss = si*sh; quat[0] = cj*cc + sj*ss; quat[1] = cj*sc - sj*cs; quat[2] = cj*ss + sj*cc; quat[3] = cj*cs - sj*sc; } /* XYZ order */ void rotate_eul(float *beul, const char axis, const float ang) { float eul[3], mat1[3][3], mat2[3][3], totmat[3][3]; assert(axis >= 'X' && axis <= 'Z'); eul[0]= eul[1]= eul[2]= 0.0f; if(axis=='X') eul[0]= ang; else if(axis=='Y') eul[1]= ang; else eul[2]= ang; eul_to_mat3(mat1,eul); eul_to_mat3(mat2,beul); mul_m3_m3m3(totmat, mat2, mat1); mat3_to_eul(beul,totmat); } /* exported to transform.c */ /* order independent! */ void compatible_eul(float eul[3], const float oldrot[3]) { float dx, dy, dz; /* correct differences of about 360 degrees first */ dx= eul[0] - oldrot[0]; dy= eul[1] - oldrot[1]; dz= eul[2] - oldrot[2]; while(fabs(dx) > 5.1) { if(dx > 0.0f) eul[0] -= 2.0f*(float)M_PI; else eul[0]+= 2.0f*(float)M_PI; dx= eul[0] - oldrot[0]; } while(fabs(dy) > 5.1) { if(dy > 0.0f) eul[1] -= 2.0f*(float)M_PI; else eul[1]+= 2.0f*(float)M_PI; dy= eul[1] - oldrot[1]; } while(fabs(dz) > 5.1) { if(dz > 0.0f) eul[2] -= 2.0f*(float)M_PI; else eul[2]+= 2.0f*(float)M_PI; dz= eul[2] - oldrot[2]; } /* is 1 of the axis rotations larger than 180 degrees and the other small? NO ELSE IF!! */ if(fabs(dx) > 3.2 && fabs(dy)<1.6 && fabs(dz)<1.6) { if(dx > 0.0f) eul[0] -= 2.0f*(float)M_PI; else eul[0]+= 2.0f*(float)M_PI; } if(fabs(dy) > 3.2 && fabs(dz)<1.6 && fabs(dx)<1.6) { if(dy > 0.0f) eul[1] -= 2.0f*(float)M_PI; else eul[1]+= 2.0f*(float)M_PI; } if(fabs(dz) > 3.2 && fabs(dx)<1.6 && fabs(dy)<1.6) { if(dz > 0.0f) eul[2] -= 2.0f*(float)M_PI; else eul[2]+= 2.0f*(float)M_PI; } /* the method below was there from ancient days... but why! probably because the code sucks :) */ #if 0 /* calc again */ dx= eul[0] - oldrot[0]; dy= eul[1] - oldrot[1]; dz= eul[2] - oldrot[2]; /* special case, tested for x-z */ if((fabs(dx) > 3.1 && fabs(dz) > 1.5) || (fabs(dx) > 1.5 && fabs(dz) > 3.1)) { if(dx > 0.0) eul[0] -= M_PI; else eul[0]+= M_PI; if(eul[1] > 0.0) eul[1]= M_PI - eul[1]; else eul[1]= -M_PI - eul[1]; if(dz > 0.0) eul[2] -= M_PI; else eul[2]+= M_PI; } else if((fabs(dx) > 3.1 && fabs(dy) > 1.5) || (fabs(dx) > 1.5 && fabs(dy) > 3.1)) { if(dx > 0.0) eul[0] -= M_PI; else eul[0]+= M_PI; if(dy > 0.0) eul[1] -= M_PI; else eul[1]+= M_PI; if(eul[2] > 0.0) eul[2]= M_PI - eul[2]; else eul[2]= -M_PI - eul[2]; } else if((fabs(dy) > 3.1 && fabs(dz) > 1.5) || (fabs(dy) > 1.5 && fabs(dz) > 3.1)) { if(eul[0] > 0.0) eul[0]= M_PI - eul[0]; else eul[0]= -M_PI - eul[0]; if(dy > 0.0) eul[1] -= M_PI; else eul[1]+= M_PI; if(dz > 0.0) eul[2] -= M_PI; else eul[2]+= M_PI; } #endif } /* uses 2 methods to retrieve eulers, and picks the closest */ /* XYZ order */ void mat3_to_compatible_eul(float eul[3], const float oldrot[3], float mat[][3]) { float eul1[3], eul2[3]; float d1, d2; mat3_to_eul2(mat, eul1, eul2); compatible_eul(eul1, oldrot); compatible_eul(eul2, oldrot); d1= (float)fabs(eul1[0]-oldrot[0]) + (float)fabs(eul1[1]-oldrot[1]) + (float)fabs(eul1[2]-oldrot[2]); d2= (float)fabs(eul2[0]-oldrot[0]) + (float)fabs(eul2[1]-oldrot[1]) + (float)fabs(eul2[2]-oldrot[2]); /* return best, which is just the one with lowest difference */ if(d1 > d2) { copy_v3_v3(eul, eul2); } else { copy_v3_v3(eul, eul1); } } /************************** Arbitrary Order Eulers ***************************/ /* Euler Rotation Order Code: * was adapted from ANSI C code from the article "Euler Angle Conversion" by Ken Shoemake, shoemake@graphics.cis.upenn.edu in "Graphics Gems IV", Academic Press, 1994 * for use in Blender */ /* Type for rotation order info - see wiki for derivation details */ typedef struct RotOrderInfo { short axis[3]; short parity; /* parity of axis permutation (even=0, odd=1) - 'n' in original code */ } RotOrderInfo; /* Array of info for Rotation Order calculations * WARNING: must be kept in same order as eEulerRotationOrders */ static RotOrderInfo rotOrders[]= { /* i, j, k, n */ {{0, 1, 2}, 0}, // XYZ {{0, 2, 1}, 1}, // XZY {{1, 0, 2}, 1}, // YXZ {{1, 2, 0}, 0}, // YZX {{2, 0, 1}, 0}, // ZXY {{2, 1, 0}, 1} // ZYX }; /* Get relevant pointer to rotation order set from the array * NOTE: since we start at 1 for the values, but arrays index from 0, * there is -1 factor involved in this process... */ #define GET_ROTATIONORDER_INFO(order) (assert(order>=0 && order<=6), (order < 1) ? &rotOrders[0] : &rotOrders[(order)-1]) /* Construct quaternion from Euler angles (in radians). */ void eulO_to_quat(float q[4], const float e[3], const short order) { RotOrderInfo *R= GET_ROTATIONORDER_INFO(order); short i=R->axis[0], j=R->axis[1], k=R->axis[2]; double ti, tj, th, ci, cj, ch, si, sj, sh, cc, cs, sc, ss; double a[3]; ti = e[i] * 0.5f; tj = e[j] * (R->parity ? -0.5f : 0.5f); th = e[k] * 0.5f; ci = cos(ti); cj = cos(tj); ch = cos(th); si = sin(ti); sj = sin(tj); sh = sin(th); cc = ci*ch; cs = ci*sh; sc = si*ch; ss = si*sh; a[i] = cj*sc - sj*cs; a[j] = cj*ss + sj*cc; a[k] = cj*cs - sj*sc; q[0] = cj*cc + sj*ss; q[1] = a[0]; q[2] = a[1]; q[3] = a[2]; if (R->parity) q[j+1] = -q[j+1]; } /* Convert quaternion to Euler angles (in radians). */ void quat_to_eulO(float e[3], short const order, const float q[4]) { float M[3][3]; quat_to_mat3(M,q); mat3_to_eulO(e, order,M); } /* Construct 3x3 matrix from Euler angles (in radians). */ void eulO_to_mat3(float M[3][3], const float e[3], const short order) { RotOrderInfo *R= GET_ROTATIONORDER_INFO(order); short i=R->axis[0], j=R->axis[1], k=R->axis[2]; double ti, tj, th, ci, cj, ch, si, sj, sh, cc, cs, sc, ss; if (R->parity) { ti = -e[i]; tj = -e[j]; th = -e[k]; } else { ti = e[i]; tj = e[j]; th = e[k]; } ci = cos(ti); cj = cos(tj); ch = cos(th); si = sin(ti); sj = sin(tj); sh = sin(th); cc = ci*ch; cs = ci*sh; sc = si*ch; ss = si*sh; M[i][i] = cj*ch; M[j][i] = sj*sc-cs; M[k][i] = sj*cc+ss; M[i][j] = cj*sh; M[j][j] = sj*ss+cc; M[k][j] = sj*cs-sc; M[i][k] = -sj; M[j][k] = cj*si; M[k][k] = cj*ci; } /* returns two euler calculation methods, so we can pick the best */ static void mat3_to_eulo2(float M[3][3], float *e1, float *e2, short order) { RotOrderInfo *R= GET_ROTATIONORDER_INFO(order); short i=R->axis[0], j=R->axis[1], k=R->axis[2]; float m[3][3]; double cy; /* process the matrix first */ copy_m3_m3(m, M); normalize_m3(m); cy= sqrt(m[i][i]*m[i][i] + m[i][j]*m[i][j]); if (cy > 16.0*(double)FLT_EPSILON) { e1[i] = atan2(m[j][k], m[k][k]); e1[j] = atan2(-m[i][k], cy); e1[k] = atan2(m[i][j], m[i][i]); e2[i] = atan2(-m[j][k], -m[k][k]); e2[j] = atan2(-m[i][k], -cy); e2[k] = atan2(-m[i][j], -m[i][i]); } else { e1[i] = atan2(-m[k][j], m[j][j]); e1[j] = atan2(-m[i][k], cy); e1[k] = 0; copy_v3_v3(e2, e1); } if (R->parity) { e1[0] = -e1[0]; e1[1] = -e1[1]; e1[2] = -e1[2]; e2[0] = -e2[0]; e2[1] = -e2[1]; e2[2] = -e2[2]; } } /* Construct 4x4 matrix from Euler angles (in radians). */ void eulO_to_mat4(float M[4][4], const float e[3], const short order) { float m[3][3]; /* for now, we'll just do this the slow way (i.e. copying matrices) */ normalize_m3(m); eulO_to_mat3(m,e, order); copy_m4_m3(M, m); } /* Convert 3x3 matrix to Euler angles (in radians). */ void mat3_to_eulO(float eul[3], const short order,float M[3][3]) { float eul1[3], eul2[3]; mat3_to_eulo2(M, eul1, eul2, order); /* return best, which is just the one with lowest values it in */ if(fabs(eul1[0])+fabs(eul1[1])+fabs(eul1[2]) > fabs(eul2[0])+fabs(eul2[1])+fabs(eul2[2])) { copy_v3_v3(eul, eul2); } else { copy_v3_v3(eul, eul1); } } /* Convert 4x4 matrix to Euler angles (in radians). */ void mat4_to_eulO(float e[3], const short order,float M[4][4]) { float m[3][3]; /* for now, we'll just do this the slow way (i.e. copying matrices) */ copy_m3_m4(m, M); normalize_m3(m); mat3_to_eulO(e, order,m); } /* uses 2 methods to retrieve eulers, and picks the closest */ void mat3_to_compatible_eulO(float eul[3], float oldrot[3], short order,float mat[3][3]) { float eul1[3], eul2[3]; float d1, d2; mat3_to_eulo2(mat, eul1, eul2, order); compatible_eul(eul1, oldrot); compatible_eul(eul2, oldrot); d1= (float)fabs(eul1[0]-oldrot[0]) + (float)fabs(eul1[1]-oldrot[1]) + (float)fabs(eul1[2]-oldrot[2]); d2= (float)fabs(eul2[0]-oldrot[0]) + (float)fabs(eul2[1]-oldrot[1]) + (float)fabs(eul2[2]-oldrot[2]); /* return best, which is just the one with lowest difference */ if (d1 > d2) copy_v3_v3(eul, eul2); else copy_v3_v3(eul, eul1); } void mat4_to_compatible_eulO(float eul[3], float oldrot[3], short order,float M[4][4]) { float m[3][3]; /* for now, we'll just do this the slow way (i.e. copying matrices) */ copy_m3_m4(m, M); normalize_m3(m); mat3_to_compatible_eulO(eul, oldrot, order, m); } /* rotate the given euler by the given angle on the specified axis */ // NOTE: is this safe to do with different axis orders? void rotate_eulO(float beul[3], short order, char axis, float ang) { float eul[3], mat1[3][3], mat2[3][3], totmat[3][3]; assert(axis >= 'X' && axis <= 'Z'); eul[0]= eul[1]= eul[2]= 0.0f; if (axis=='X') eul[0]= ang; else if (axis=='Y') eul[1]= ang; else eul[2]= ang; eulO_to_mat3(mat1,eul, order); eulO_to_mat3(mat2,beul, order); mul_m3_m3m3(totmat, mat2, mat1); mat3_to_eulO(beul, order,totmat); } /* the matrix is written to as 3 axis vectors */ void eulO_to_gimbal_axis(float gmat[][3], const float eul[3], const short order) { RotOrderInfo *R= GET_ROTATIONORDER_INFO(order); float mat[3][3]; float teul[3]; /* first axis is local */ eulO_to_mat3(mat,eul, order); copy_v3_v3(gmat[R->axis[0]], mat[R->axis[0]]); /* second axis is local minus first rotation */ copy_v3_v3(teul, eul); teul[R->axis[0]] = 0; eulO_to_mat3(mat,teul, order); copy_v3_v3(gmat[R->axis[1]], mat[R->axis[1]]); /* Last axis is global */ gmat[R->axis[2]][0] = 0; gmat[R->axis[2]][1] = 0; gmat[R->axis[2]][2] = 0; gmat[R->axis[2]][R->axis[2]] = 1; } /******************************* Dual Quaternions ****************************/ /* Conversion routines between (regular quaternion, translation) and dual quaternion. Version 1.0.0, February 7th, 2007 Copyright (C) 2006-2007 University of Dublin, Trinity College, All Rights Reserved This software is provided 'as-is', without any express or implied warranty. In no event will the author(s) be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. Author: Ladislav Kavan, kavanl@cs.tcd.ie Changes for Blender: - renaming, style changes and optimizations - added support for scaling */ void mat4_to_dquat(DualQuat *dq,float basemat[][4], float mat[][4]) { float *t, *q, dscale[3], scale[3], basequat[4]; float baseRS[4][4], baseinv[4][4], baseR[4][4], baseRinv[4][4]; float R[4][4], S[4][4]; /* split scaling and rotation, there is probably a faster way to do this, it's done like this now to correctly get negative scaling */ mul_m4_m4m4(baseRS, basemat, mat); mat4_to_size(scale,baseRS); copy_v3_v3(dscale, scale); dscale[0] -= 1.0f; dscale[1] -= 1.0f; dscale[2] -= 1.0f; if((determinant_m4(mat) < 0.0f) || len_v3(dscale) > 1e-4f) { /* extract R and S */ float tmp[4][4]; /* extra orthogonalize, to avoid flipping with stretched bones */ copy_m4_m4(tmp, baseRS); orthogonalize_m4(tmp, 1); mat4_to_quat(basequat, tmp); quat_to_mat4(baseR, basequat); copy_v3_v3(baseR[3], baseRS[3]); invert_m4_m4(baseinv, basemat); mul_m4_m4m4(R, baseinv, baseR); invert_m4_m4(baseRinv, baseR); mul_m4_m4m4(S, baseRS, baseRinv); /* set scaling part */ mul_serie_m4(dq->scale, basemat, S, baseinv, NULL, NULL, NULL, NULL, NULL); dq->scale_weight= 1.0f; } else { /* matrix does not contain scaling */ copy_m4_m4(R, mat); dq->scale_weight= 0.0f; } /* non-dual part */ mat4_to_quat(dq->quat,R); /* dual part */ t= R[3]; q= dq->quat; dq->trans[0]= -0.5f*(t[0]*q[1] + t[1]*q[2] + t[2]*q[3]); dq->trans[1]= 0.5f*(t[0]*q[0] + t[1]*q[3] - t[2]*q[2]); dq->trans[2]= 0.5f*(-t[0]*q[3] + t[1]*q[0] + t[2]*q[1]); dq->trans[3]= 0.5f*(t[0]*q[2] - t[1]*q[1] + t[2]*q[0]); } void dquat_to_mat4(float mat[][4], DualQuat *dq) { float len, *t, q0[4]; /* regular quaternion */ copy_qt_qt(q0, dq->quat); /* normalize */ len= (float)sqrt(dot_qtqt(q0, q0)); if(len != 0.0f) mul_qt_fl(q0, 1.0f/len); /* rotation */ quat_to_mat4(mat,q0); /* translation */ t= dq->trans; mat[3][0]= 2.0f*(-t[0]*q0[1] + t[1]*q0[0] - t[2]*q0[3] + t[3]*q0[2]); mat[3][1]= 2.0f*(-t[0]*q0[2] + t[1]*q0[3] + t[2]*q0[0] - t[3]*q0[1]); mat[3][2]= 2.0f*(-t[0]*q0[3] - t[1]*q0[2] + t[2]*q0[1] + t[3]*q0[0]); /* note: this does not handle scaling */ } void add_weighted_dq_dq(DualQuat *dqsum, DualQuat *dq, float weight) { int flipped= 0; /* make sure we interpolate quats in the right direction */ if (dot_qtqt(dq->quat, dqsum->quat) < 0) { flipped= 1; weight= -weight; } /* interpolate rotation and translation */ dqsum->quat[0] += weight*dq->quat[0]; dqsum->quat[1] += weight*dq->quat[1]; dqsum->quat[2] += weight*dq->quat[2]; dqsum->quat[3] += weight*dq->quat[3]; dqsum->trans[0] += weight*dq->trans[0]; dqsum->trans[1] += weight*dq->trans[1]; dqsum->trans[2] += weight*dq->trans[2]; dqsum->trans[3] += weight*dq->trans[3]; /* interpolate scale - but only if needed */ if (dq->scale_weight) { float wmat[4][4]; if(flipped) /* we don't want negative weights for scaling */ weight= -weight; copy_m4_m4(wmat, dq->scale); mul_m4_fl(wmat, weight); add_m4_m4m4(dqsum->scale, dqsum->scale, wmat); dqsum->scale_weight += weight; } } void normalize_dq(DualQuat *dq, float totweight) { float scale= 1.0f/totweight; mul_qt_fl(dq->quat, scale); mul_qt_fl(dq->trans, scale); if(dq->scale_weight) { float addweight= totweight - dq->scale_weight; if(addweight) { dq->scale[0][0] += addweight; dq->scale[1][1] += addweight; dq->scale[2][2] += addweight; dq->scale[3][3] += addweight; } mul_m4_fl(dq->scale, scale); dq->scale_weight= 1.0f; } } void mul_v3m3_dq(float *co, float mat[][3],DualQuat *dq) { float M[3][3], t[3], scalemat[3][3], len2; float w= dq->quat[0], x= dq->quat[1], y= dq->quat[2], z= dq->quat[3]; float t0= dq->trans[0], t1= dq->trans[1], t2= dq->trans[2], t3= dq->trans[3]; /* rotation matrix */ M[0][0]= w*w + x*x - y*y - z*z; M[1][0]= 2*(x*y - w*z); M[2][0]= 2*(x*z + w*y); M[0][1]= 2*(x*y + w*z); M[1][1]= w*w + y*y - x*x - z*z; M[2][1]= 2*(y*z - w*x); M[0][2]= 2*(x*z - w*y); M[1][2]= 2*(y*z + w*x); M[2][2]= w*w + z*z - x*x - y*y; len2= dot_qtqt(dq->quat, dq->quat); if(len2 > 0.0f) len2= 1.0f/len2; /* translation */ t[0]= 2*(-t0*x + w*t1 - t2*z + y*t3); t[1]= 2*(-t0*y + t1*z - x*t3 + w*t2); t[2]= 2*(-t0*z + x*t2 + w*t3 - t1*y); /* apply scaling */ if(dq->scale_weight) mul_m4_v3(dq->scale, co); /* apply rotation and translation */ mul_m3_v3(M, co); co[0]= (co[0] + t[0])*len2; co[1]= (co[1] + t[1])*len2; co[2]= (co[2] + t[2])*len2; /* compute crazyspace correction mat */ if(mat) { if(dq->scale_weight) { copy_m3_m4(scalemat, dq->scale); mul_m3_m3m3(mat, M, scalemat); } else copy_m3_m3(mat, M); mul_m3_fl(mat, len2); } } void copy_dq_dq(DualQuat *dq1, DualQuat *dq2) { memcpy(dq1, dq2, sizeof(DualQuat)); } /* axis matches eTrackToAxis_Modes */ void quat_apply_track(float quat[4], short axis, short upflag) { /* rotations are hard coded to match vec_to_quat */ const float quat_track[][4]= {{0.70710676908493, 0.0, -0.70710676908493, 0.0}, /* pos-y90 */ {0.5, 0.5, 0.5, 0.5}, /* Quaternion((1,0,0), radians(90)) * Quaternion((0,1,0), radians(90)) */ {0.70710676908493, 0.0, 0.0, 0.70710676908493}, /* pos-z90 */ {0.70710676908493, 0.0, 0.70710676908493, 0.0}, /* neg-y90 */ {0.5, -0.5, -0.5, 0.5}, /* Quaternion((1,0,0), radians(-90)) * Quaternion((0,1,0), radians(-90)) */ {-3.0908619663705394e-08, 0.70710676908493, 0.70710676908493, 3.0908619663705394e-08}}; /* no rotation */ assert(axis >= 0 && axis <= 5); assert(upflag >= 0 && upflag <= 2); mul_qt_qtqt(quat, quat, quat_track[axis]); if(axis>2) axis= axis-3; /* there are 2 possible up-axis for each axis used, the 'quat_track' applies so the first * up axis is used X->Y, Y->X, Z->X, if this first up axis isn used then rotate 90d * the strange bit shift below just find the low axis {X:Y, Y:X, Z:X} */ if(upflag != (2-axis)>>1) { float q[4]= {0.70710676908493, 0.0, 0.0, 0.0}; /* assign 90d rotation axis */ q[axis+1] = ((axis==1)) ? 0.70710676908493 : -0.70710676908493; /* flip non Y axis */ mul_qt_qtqt(quat, quat, q); } } void vec_apply_track(float vec[3], short axis) { float tvec[3]; assert(axis >= 0 && axis <= 5); copy_v3_v3(tvec, vec); switch(axis) { case 0: /* pos-x */ /* vec[0]= 0.0; */ vec[1]= tvec[2]; vec[2]= -tvec[1]; break; case 1: /* pos-y */ /* vec[0]= tvec[0]; */ /* vec[1]= 0.0; */ /* vec[2]= tvec[2]; */ break; case 2: /* pos-z */ /* vec[0]= tvec[0]; */ /* vec[1]= tvec[1]; */ // vec[2]= 0.0; */ break; case 3: /* neg-x */ /* vec[0]= 0.0; */ vec[1]= tvec[2]; vec[2]= -tvec[1]; break; case 4: /* neg-y */ vec[0]= -tvec[2]; /* vec[1]= 0.0; */ vec[2]= tvec[0]; break; case 5: /* neg-z */ vec[0]= -tvec[0]; vec[1]= -tvec[1]; /* vec[2]= 0.0; */ break; } } /* lens/angle conversion (radians) */ float lens_to_angle(float lens) { return 2.0f * atanf(16.0f/lens); } float angle_to_lens(float angle) { return 16.0f / tanf(angle * 0.5f); } /* 'mod_inline(-3,4)= 1', 'fmod(-3,4)= -3' */ static float mod_inline(float a, float b) { return a - (b * floorf(a / b)); } float angle_wrap_rad(float angle) { return mod_inline(angle + (float)M_PI, (float)M_PI*2.0f) - (float)M_PI; } float angle_wrap_deg(float angle) { return mod_inline(angle + 180.0f, 360.0f) - 180.0f; }