use static functions where possible for some local functions.
[blender.git] / source / blender / blenkernel / intern / collision.c
index 1e8b870665868a9aa091168dd202cef2c467de65..8ef1c28537080f9fb3e20fc88872949227fee7af 100644 (file)
 
 #include "BKE_cloth.h"
 
-#include "DNA_group_types.h"
-#include "DNA_object_types.h"
 #include "DNA_cloth_types.h"
+#include "DNA_group_types.h"
 #include "DNA_mesh_types.h"
+#include "DNA_object_types.h"
+#include "DNA_object_force.h"
 #include "DNA_scene_types.h"
 
 #include "BKE_DerivedMesh.h"
 #include "BKE_modifier.h"
 #include "BKE_utildefines.h"
 #include "BKE_DerivedMesh.h"
-#include "mydevice.h"
 
 #include "Bullet-C-Api.h"
 
 #include "BLI_kdopbvh.h"
 #include "BKE_collision.h"
 
-#ifdef _WIN32
-static void start ( void )
-{}
-static void end ( void )
-{
-}
-static double val()
-{
-       return 0;
-}
-#else
-#include <sys/time.h>
-static void mystart ( struct timeval *start, struct timezone *z )
-{
-       gettimeofday ( start, z );
-}
-static void myend ( struct timeval *end, struct timezone *z )
-{
-       gettimeofday ( end,z );
-}
-static double myval ( struct timeval *start, struct timeval *end )
-{
-       double t1, t2;
-       t1 = ( double ) start->tv_sec + ( double ) start->tv_usec/ ( 1000*1000 );
-       t2 = ( double ) end->tv_sec + ( double ) end->tv_usec/ ( 1000*1000 );
-       return t2-t1;
-}
-#endif
 
 /***********************************
 Collision modifier code start
@@ -178,16 +150,16 @@ Collision modifier code end
 ***********************************/
 
 /**
- * gsl_poly_solve_cubic -
- *
- * copied from SOLVE_CUBIC.C --> GSL
- */
+* gsl_poly_solve_cubic -
+*
+* copied from SOLVE_CUBIC.C --> GSL
+*/
 
 #define mySWAP(a,b) do { double tmp = b ; b = a ; a = tmp ; } while(0)
 
 int 
-               gsl_poly_solve_cubic (double a, double b, double c, 
-                                                         double *x0, double *x1, double *x2)
+gsl_poly_solve_cubic (double a, double b, double c, 
+                                         double *x0, double *x1, double *x2)
 {
        double q = (a * a - 3 * b);
        double r = (2 * a * a * a - 9 * a * b + 27 * c);
@@ -210,10 +182,10 @@ int
        }
        else if (CR2 == CQ3) 
        {
-      /* this test is actually R2 == Q3, written in a form suitable
+               /* this test is actually R2 == Q3, written in a form suitable
                for exact computation with integers */
 
-      /* Due to finite precision some double roots may be missed, and
+               /* Due to finite precision some double roots may be missed, and
                considered to be a pair of complex roots z = x +/- epsilon i
                close to the real axis. */
 
@@ -242,20 +214,20 @@ int
                *x0 = norm * cos (theta / 3) - a / 3;
                *x1 = norm * cos ((theta + 2.0 * M_PI) / 3) - a / 3;
                *x2 = norm * cos ((theta - 2.0 * M_PI) / 3) - a / 3;
-      
+
                /* Sort *x0, *x1, *x2 into increasing order */
 
                if (*x0 > *x1)
                        mySWAP(*x0, *x1) ;
-      
+
                if (*x1 > *x2)
                {
                        mySWAP(*x1, *x2) ;
-          
+
                        if (*x0 > *x1)
                                mySWAP(*x0, *x1) ;
                }
-      
+
                return 3;
        }
        else
@@ -271,13 +243,13 @@ int
 
 
 /**
- * gsl_poly_solve_quadratic
- *
- * copied from GSL
- */
+* gsl_poly_solve_quadratic
+*
+* copied from GSL
+*/
 int 
-               gsl_poly_solve_quadratic (double a, double b, double c, 
-                                                                 double *x0, double *x1)
+gsl_poly_solve_quadratic (double a, double b, double c, 
+                                                 double *x0, double *x1)
 {
        double disc = b * b - 4 * a * c;
 
@@ -338,58 +310,58 @@ int
 
 
 /*
- * See Bridson et al. "Robust Treatment of Collision, Contact and Friction for Cloth Animation"
- *     page 4, left column
- */
-int cloth_get_collision_time ( double a[3], double b[3], double c[3], double d[3], double e[3], double f[3], double solution[3] )
+* See Bridson et al. "Robust Treatment of Collision, Contact and Friction for Cloth Animation"
+*     page 4, left column
+*/
+static int cloth_get_collision_time ( double a[3], double b[3], double c[3], double d[3], double e[3], double f[3], double solution[3] )
 {
        int num_sols = 0;
 
        // x^0 - checked 
        double g =      a[0] * c[1] * e[2] - a[0] * c[2] * e[1] +
-                               a[1] * c[2] * e[0] - a[1] * c[0] * e[2] + 
-                               a[2] * c[0] * e[1] - a[2] * c[1] * e[0];
-       
+               a[1] * c[2] * e[0] - a[1] * c[0] * e[2] + 
+               a[2] * c[0] * e[1] - a[2] * c[1] * e[0];
+
        // x^1
        double h = -b[2] * c[1] * e[0] + b[1] * c[2] * e[0] - a[2] * d[1] * e[0] +
-                       a[1] * d[2] * e[0] + b[2] * c[0] * e[1] - b[0] * c[2] * e[1] +
-                       a[2] * d[0] * e[1] - a[0] * d[2] * e[1] - b[1] * c[0] * e[2] +
-                       b[0] * c[1] * e[2] - a[1] * d[0] * e[2] + a[0] * d[1] * e[2] -
-                       a[2] * c[1] * f[0] + a[1] * c[2] * f[0] + a[2] * c[0] * f[1] -
-                       a[0] * c[2] * f[1] - a[1] * c[0] * f[2] + a[0] * c[1] * f[2];
+               a[1] * d[2] * e[0] + b[2] * c[0] * e[1] - b[0] * c[2] * e[1] +
+               a[2] * d[0] * e[1] - a[0] * d[2] * e[1] - b[1] * c[0] * e[2] +
+               b[0] * c[1] * e[2] - a[1] * d[0] * e[2] + a[0] * d[1] * e[2] -
+               a[2] * c[1] * f[0] + a[1] * c[2] * f[0] + a[2] * c[0] * f[1] -
+               a[0] * c[2] * f[1] - a[1] * c[0] * f[2] + a[0] * c[1] * f[2];
 
        // x^2
        double i = -b[2] * d[1] * e[0] + b[1] * d[2] * e[0] +
-                       b[2] * d[0] * e[1] - b[0] * d[2] * e[1] -
-                       b[1] * d[0] * e[2] + b[0] * d[1] * e[2] -
-                       b[2] * c[1] * f[0] + b[1] * c[2] * f[0] -
-                       a[2] * d[1] * f[0] + a[1] * d[2] * f[0] +
-                       b[2] * c[0] * f[1] - b[0] * c[2] * f[1] + 
-                       a[2] * d[0] * f[1] - a[0] * d[2] * f[1] -
-                       b[1] * c[0] * f[2] + b[0] * c[1] * f[2] -
-                       a[1] * d[0] * f[2] + a[0] * d[1] * f[2];
-       
+               b[2] * d[0] * e[1] - b[0] * d[2] * e[1] -
+               b[1] * d[0] * e[2] + b[0] * d[1] * e[2] -
+               b[2] * c[1] * f[0] + b[1] * c[2] * f[0] -
+               a[2] * d[1] * f[0] + a[1] * d[2] * f[0] +
+               b[2] * c[0] * f[1] - b[0] * c[2] * f[1] + 
+               a[2] * d[0] * f[1] - a[0] * d[2] * f[1] -
+               b[1] * c[0] * f[2] + b[0] * c[1] * f[2] -
+               a[1] * d[0] * f[2] + a[0] * d[1] * f[2];
+
        // x^3 - checked
        double j = -b[2] * d[1] * f[0] + b[1] * d[2] * f[0] +
-                       b[2] * d[0] * f[1] - b[0] * d[2] * f[1] -
-                       b[1] * d[0] * f[2] + b[0] * d[1] * f[2];
-       
+               b[2] * d[0] * f[1] - b[0] * d[2] * f[1] -
+               b[1] * d[0] * f[2] + b[0] * d[1] * f[2];
+
        /*
        printf("r1: %lf\n", a[0] * c[1] * e[2] - a[0] * c[2] * e[1]);
        printf("r2: %lf\n", a[1] * c[2] * e[0] - a[1] * c[0] * e[2]);
        printf("r3: %lf\n", a[2] * c[0] * e[1] - a[2] * c[1] * e[0]);
-       
+
        printf("x1 x: %f, y: %f, z: %f\n", a[0], a[1], a[2]);
        printf("x2 x: %f, y: %f, z: %f\n", c[0], c[1], c[2]);
        printf("x3 x: %f, y: %f, z: %f\n", e[0], e[1], e[2]);
-       
+
        printf("v1 x: %f, y: %f, z: %f\n", b[0], b[1], b[2]);
        printf("v2 x: %f, y: %f, z: %f\n", d[0], d[1], d[2]);
        printf("v3 x: %f, y: %f, z: %f\n", f[0], f[1], f[2]);
-       
-       printf("t^3: %lf, t^2: %lf, t^1: %lf, t^0: %lf\n", j, i, h, g);
-       */
 
+       printf("t^3: %lf, t^2: %lf, t^1: %lf, t^0: %lf\n", j, i, h, g);
+       
+*/
        // Solve cubic equation to determine times t1, t2, t3, when the collision will occur.
        if ( ABS ( j ) > DBL_EPSILON )
        {
@@ -453,8 +425,9 @@ int cloth_get_collision_time ( double a[3], double b[3], double c[3], double d[3
        return num_sols;
 }
 
+
 // w3 is not perfect
-void collision_compute_barycentric ( float pv[3], float p1[3], float p2[3], float p3[3], float *w1, float *w2, float *w3 )
+static void collision_compute_barycentric ( float pv[3], float p1[3], float p2[3], float p3[3], float *w1, float *w2, float *w3 )
 {
        double  tempV1[3], tempV2[3], tempV4[3];
        double  a,b,c,d,e,f;
@@ -498,6 +471,7 @@ DO_INLINE void collision_interpolateOnTriangle ( float to[3], float v1[3], float
        VECADDMUL ( to, v3, w3 );
 }
 
+
 int cloth_collision_response_static ( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair, CollPair *collision_end )
 {
        int result = 0;
@@ -517,17 +491,17 @@ int cloth_collision_response_static ( ClothModifierData *clmd, CollisionModifier
 
                // compute barycentric coordinates for both collision points
                collision_compute_barycentric ( collpair->pa,
-                                               cloth1->verts[collpair->ap1].txold,
-                                               cloth1->verts[collpair->ap2].txold,
-                                               cloth1->verts[collpair->ap3].txold,
-                                               &w1, &w2, &w3 );
+                       cloth1->verts[collpair->ap1].txold,
+                       cloth1->verts[collpair->ap2].txold,
+                       cloth1->verts[collpair->ap3].txold,
+                       &w1, &w2, &w3 );
 
                // was: txold
                collision_compute_barycentric ( collpair->pb,
-                                               collmd->current_x[collpair->bp1].co,
-                                               collmd->current_x[collpair->bp2].co,
-                                               collmd->current_x[collpair->bp3].co,
-                                               &u1, &u2, &u3 );
+                       collmd->current_x[collpair->bp1].co,
+                       collmd->current_x[collpair->bp2].co,
+                       collmd->current_x[collpair->bp3].co,
+                       &u1, &u2, &u3 );
 
                // Calculate relative "velocity".
                collision_interpolateOnTriangle ( v1, cloth1->verts[collpair->ap1].tv, cloth1->verts[collpair->ap2].tv, cloth1->verts[collpair->ap3].tv, w1, w2, w3 );
@@ -567,7 +541,7 @@ int cloth_collision_response_static ( ClothModifierData *clmd, CollisionModifier
                        {
                                Normalize ( vrel_t_pre );
 
-                               impulse = 2.0 * magtangent / ( 1.0 + w1*w1 + w2*w2 + w3*w3 );
+                               impulse = magtangent / ( 1.0 + w1*w1 + w2*w2 + w3*w3 ); // 2.0 * 
                                VECADDMUL ( cloth1->verts[collpair->ap1].impulse, vrel_t_pre, w1 * impulse );
                                VECADDMUL ( cloth1->verts[collpair->ap2].impulse, vrel_t_pre, w2 * impulse );
                                VECADDMUL ( cloth1->verts[collpair->ap3].impulse, vrel_t_pre, w3 * impulse );
@@ -617,7 +591,9 @@ CollPair* cloth_collision ( ModifierData *md1, ModifierData *md2, BVHTreeOverlap
        ClothModifierData *clmd = ( ClothModifierData * ) md1;
        CollisionModifierData *collmd = ( CollisionModifierData * ) md2;
        MFace *face1=NULL, *face2 = NULL;
+#ifdef USE_BULLET
        ClothVertex *verts1 = clmd->clothObject->verts;
+#endif
        double distance = 0;
        float epsilon1 = clmd->coll_parms->epsilon;
        float epsilon2 = BLI_bvhtree_getepsilon ( collmd->bvhtree );
@@ -693,10 +669,10 @@ CollPair* cloth_collision ( ModifierData *md1, ModifierData *md2, BVHTreeOverlap
                                break;
                }
 
-#ifdef WITH_BULLET
+#ifdef USE_BULLET
                // calc distance + normal
                distance = plNearestPoints (
-                              verts1[collpair->ap1].txold, verts1[collpair->ap2].txold, verts1[collpair->ap3].txold, collmd->current_x[collpair->bp1].co, collmd->current_x[collpair->bp2].co, collmd->current_x[collpair->bp3].co, collpair->pa,collpair->pb,collpair->vector );
+                       verts1[collpair->ap1].txold, verts1[collpair->ap2].txold, verts1[collpair->ap3].txold, collmd->current_x[collpair->bp1].co, collmd->current_x[collpair->bp2].co, collmd->current_x[collpair->bp3].co, collpair->pa,collpair->pb,collpair->vector );
 #else
                // just be sure that we don't add anything
                distance = 2.0 * ( epsilon1 + epsilon2 + ALMOST_ZERO );
@@ -709,85 +685,72 @@ CollPair* cloth_collision ( ModifierData *md1, ModifierData *md2, BVHTreeOverlap
 
                        collpair->distance = distance;
                        collpair->flag = 0;
-               }
+                       collpair++;
+               }/*
                else
                {
-                       // check for collision in the future
-                       collpair->flag |= COLLISION_IN_FUTURE;
-               }
-               collpair++;
-       }
-       return collpair;
-}
-
-int cloth_are_edges_adjacent ( ClothModifierData *clmd, CollisionModifierData *collmd, EdgeCollPair *edgecollpair )
-{
-       Cloth *cloth1 = NULL;
-       ClothVertex *verts1 = NULL;
-       float temp[3];
-       MVert *verts2 = collmd->current_x; // old x
+                       float w1, w2, w3, u1, u2, u3;
+                       float v1[3], v2[3], relativeVelocity[3];
 
-       cloth1 = clmd->clothObject;
-       verts1 = cloth1->verts;
+                       // calc relative velocity
+                       
+                       // compute barycentric coordinates for both collision points
+                       collision_compute_barycentric ( collpair->pa,
+                       verts1[collpair->ap1].txold,
+                       verts1[collpair->ap2].txold,
+                       verts1[collpair->ap3].txold,
+                       &w1, &w2, &w3 );
 
-       VECSUB ( temp, verts1[edgecollpair->p11].txold, verts2[edgecollpair->p21].co );
-       if ( ABS ( INPR ( temp, temp ) ) < ALMOST_ZERO )
-               return 1;
+                       // was: txold
+                       collision_compute_barycentric ( collpair->pb,
+                       collmd->current_x[collpair->bp1].co,
+                       collmd->current_x[collpair->bp2].co,
+                       collmd->current_x[collpair->bp3].co,
+                       &u1, &u2, &u3 );
 
-       VECSUB ( temp, verts1[edgecollpair->p11].txold, verts2[edgecollpair->p22].co );
-       if ( ABS ( INPR ( temp, temp ) ) < ALMOST_ZERO )
-               return 1;
+                       // Calculate relative "velocity".
+                       collision_interpolateOnTriangle ( v1, verts1[collpair->ap1].tv, verts1[collpair->ap2].tv, verts1[collpair->ap3].tv, w1, w2, w3 );
 
-       VECSUB ( temp, verts1[edgecollpair->p12].txold, verts2[edgecollpair->p21].co );
-       if ( ABS ( INPR ( temp, temp ) ) < ALMOST_ZERO )
-               return 1;
+                       collision_interpolateOnTriangle ( v2, collmd->current_v[collpair->bp1].co, collmd->current_v[collpair->bp2].co, collmd->current_v[collpair->bp3].co, u1, u2, u3 );
 
-       VECSUB ( temp, verts1[edgecollpair->p12].txold, verts2[edgecollpair->p22].co );
-       if ( ABS ( INPR ( temp, temp ) ) < ALMOST_ZERO )
-               return 1;
-       
-       VECSUB ( temp, verts1[edgecollpair->p11].txold, verts1[edgecollpair->p12].txold );
-       if ( ABS ( INPR ( temp, temp ) ) < ALMOST_ZERO )
-               return 1;
-       
-       VECSUB ( temp, verts2[edgecollpair->p21].co, verts2[edgecollpair->p22].co );
-       if ( ABS ( INPR ( temp, temp ) ) < ALMOST_ZERO )
-               return 1;
-       
+                       VECSUB ( relativeVelocity, v2, v1 );
 
-       return 0;
+                       if(sqrt(INPR(relativeVelocity, relativeVelocity)) >= distance)
+                       {
+                               // check for collision in the future
+                               collpair->flag |= COLLISION_IN_FUTURE;
+                               collpair++;
+                       }
+               }*/
+       }
+       return collpair;
 }
 
-int cloth_collision_response_moving( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair, CollPair *collision_end )
+static int cloth_collision_response_moving( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair, CollPair *collision_end )
 {
        int result = 0;
        Cloth *cloth1;
        float w1, w2, w3, u1, u2, u3;
        float v1[3], v2[3], relativeVelocity[3];
        float magrelVel;
-       float epsilon2 = BLI_bvhtree_getepsilon ( collmd->bvhtree );
 
        cloth1 = clmd->clothObject;
 
        for ( ; collpair != collision_end; collpair++ )
        {
-               // only handle static collisions here
-               if ( collpair->flag & COLLISION_IN_FUTURE )
-                       continue;
-
                // compute barycentric coordinates for both collision points
                collision_compute_barycentric ( collpair->pa,
-                                                                               cloth1->verts[collpair->ap1].txold,
-                 cloth1->verts[collpair->ap2].txold,
-       cloth1->verts[collpair->ap3].txold,
- &w1, &w2, &w3 );
+                       cloth1->verts[collpair->ap1].txold,
+                       cloth1->verts[collpair->ap2].txold,
+                       cloth1->verts[collpair->ap3].txold,
                      &w1, &w2, &w3 );
 
                // was: txold
                collision_compute_barycentric ( collpair->pb,
-                                                                               collmd->current_x[collpair->bp1].co,
-                 collmd->current_x[collpair->bp2].co,
-       collmd->current_x[collpair->bp3].co,
- &u1, &u2, &u3 );
+                       collmd->current_x[collpair->bp1].co,
+                       collmd->current_x[collpair->bp2].co,
+                       collmd->current_x[collpair->bp3].co,
                      &u1, &u2, &u3 );
 
                // Calculate relative "velocity".
                collision_interpolateOnTriangle ( v1, cloth1->verts[collpair->ap1].tv, cloth1->verts[collpair->ap2].tv, cloth1->verts[collpair->ap3].tv, w1, w2, w3 );
@@ -808,7 +771,7 @@ int cloth_collision_response_moving( ClothModifierData *clmd, CollisionModifierD
                if ( magrelVel > ALMOST_ZERO )
                {
                        // Calculate Impulse magnitude to stop all motion in normal direction.
-                       float magtangent = 0, repulse = 0, d = 0;
+                       float magtangent = 0;
                        double impulse = 0.0;
                        float vrel_t_pre[3];
                        float temp[3];
@@ -853,53 +816,282 @@ int cloth_collision_response_moving( ClothModifierData *clmd, CollisionModifierD
                        d = clmd->coll_parms->epsilon*8.0/9.0 + epsilon2*8.0/9.0 - collpair->distance;
                        if ( ( magrelVel < 0.1*d*clmd->sim_parms->stepsPerFrame ) && ( d > ALMOST_ZERO ) )
                        {
-                               repulse = MIN2 ( d*1.0/clmd->sim_parms->stepsPerFrame, 0.1*d*clmd->sim_parms->stepsPerFrame - magrelVel );
+                       repulse = MIN2 ( d*1.0/clmd->sim_parms->stepsPerFrame, 0.1*d*clmd->sim_parms->stepsPerFrame - magrelVel );
 
-                               // stay on the safe side and clamp repulse
-                               if ( impulse > ALMOST_ZERO )
-                                       repulse = MIN2 ( repulse, 5.0*impulse );
-                               repulse = MAX2 ( impulse, repulse );
+                       // stay on the safe side and clamp repulse
+                       if ( impulse > ALMOST_ZERO )
+                       repulse = MIN2 ( repulse, 5.0*impulse );
+                       repulse = MAX2 ( impulse, repulse );
 
-                               impulse = repulse / ( 1.0 + w1*w1 + w2*w2 + w3*w3 ); // original 2.0 / 0.25
-                               VECADDMUL ( cloth1->verts[collpair->ap1].impulse, collpair->normal,  impulse );
-                               VECADDMUL ( cloth1->verts[collpair->ap2].impulse, collpair->normal,  impulse );
-                               VECADDMUL ( cloth1->verts[collpair->ap3].impulse, collpair->normal,  impulse );
+                       impulse = repulse / ( 1.0 + w1*w1 + w2*w2 + w3*w3 ); // original 2.0 / 0.25
+                       VECADDMUL ( cloth1->verts[collpair->ap1].impulse, collpair->normal,  impulse );
+                       VECADDMUL ( cloth1->verts[collpair->ap2].impulse, collpair->normal,  impulse );
+                       VECADDMUL ( cloth1->verts[collpair->ap3].impulse, collpair->normal,  impulse );
                        }
-*/
+                       */
                        result = 1;
                }
        }
        return result;
 }
 
-int cloth_collision_moving_edges ( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair )
+static float projectPointOntoLine(float *p, float *a, float *b) 
+{
+   float ba[3], pa[3];
+   VECSUB(ba, b, a);
+   VECSUB(pa, p, a);
+   return INPR(pa, ba) / INPR(ba, ba);
+}
+
+static void calculateEENormal(float *np1, float *np2, float *np3, float *np4,float *out_normal) 
+{
+       float line1[3], line2[3];
+       float length;
+
+       VECSUB(line1, np2, np1);
+       VECSUB(line2, np3, np1);
+
+       // printf("l1: %f, l1: %f, l2: %f, l2: %f\n", line1[0], line1[1], line2[0], line2[1]);
+
+       Crossf(out_normal, line1, line2);
+
+       
+
+       length = Normalize(out_normal);
+       if (length <= FLT_EPSILON)
+       { // lines are collinear
+               VECSUB(out_normal, np2, np1);
+               Normalize(out_normal);
+       }
+}
+
+static void findClosestPointsEE(float *x1, float *x2, float *x3, float *x4, float *w1, float *w2)
+{
+       float temp[3], temp2[3];
+       
+       double a, b, c, e, f; 
+
+       VECSUB(temp, x2, x1);
+       a = INPR(temp, temp);
+
+       VECSUB(temp2, x4, x3);
+       b = -INPR(temp, temp2);
+
+       c = INPR(temp2, temp2);
+
+       VECSUB(temp2, x3, x1);
+       e = INPR(temp, temp2);
+
+       VECSUB(temp, x4, x3);
+       f = -INPR(temp, temp2);
+
+       *w1 = (e * c - b * f) / (a * c - b * b);
+       *w2 = (f - b * *w1) / c;
+
+}
+
+// calculates the distance of 2 edges
+static float edgedge_distance(float np11[3], float np12[3], float np21[3], float np22[3], float *out_a1, float *out_a2, float *out_normal)
+{
+       float line1[3], line2[3], cross[3];
+       float length;
+       float temp[3], temp2[3];
+       float dist_a1, dist_a2;
+       
+       VECSUB(line1, np12, np11);
+       VECSUB(line2, np22, np21);
+
+       Crossf(cross, line1, line2);
+       length = INPR(cross, cross);
+
+       if (length < FLT_EPSILON) 
+       {
+               *out_a2 = projectPointOntoLine(np11, np21, np22);
+               if ((*out_a2 >= -FLT_EPSILON) && (*out_a2 <= 1.0 + FLT_EPSILON)) 
+               {
+                       *out_a1 = 0;
+                       calculateEENormal(np11, np12, np21, np22, out_normal);
+                       VECSUB(temp, np22, np21);
+                       VecMulf(temp, *out_a2);
+                       VECADD(temp2, temp, np21);
+                       VECADD(temp2, temp2, np11);
+                       return INPR(temp2, temp2);
+               }
+
+               CLAMP(*out_a2, 0.0, 1.0);
+               if (*out_a2 > .5) 
+               { // == 1.0
+                       *out_a1 = projectPointOntoLine(np22, np11, np12);
+                       if ((*out_a1 >= -FLT_EPSILON) && (*out_a1 <= 1.0 + FLT_EPSILON)) 
+                       {
+                               calculateEENormal(np11, np12, np21, np22, out_normal);
+
+                               // return (np22 - (np11 + (np12 - np11) * out_a1)).lengthSquared();
+                               VECSUB(temp, np12, np11);
+                               VecMulf(temp, *out_a1);
+                               VECADD(temp2, temp, np11);
+                               VECSUB(temp2, np22, temp2);
+                               return INPR(temp2, temp2);
+                       }
+               } 
+               else 
+               { // == 0.0
+                       *out_a1 = projectPointOntoLine(np21, np11, np12);
+                       if ((*out_a1 >= -FLT_EPSILON) && (*out_a1 <= 1.0 + FLT_EPSILON)) 
+                       {
+                               calculateEENormal(np11, np11, np21, np22, out_normal);
+
+                               // return (np21 - (np11 + (np12 - np11) * out_a1)).lengthSquared();
+                               VECSUB(temp, np12, np11);
+                               VecMulf(temp, *out_a1);
+                               VECADD(temp2, temp, np11);
+                               VECSUB(temp2, np21, temp2);
+                               return INPR(temp2, temp2);
+                       }
+               }
+
+               CLAMP(*out_a1, 0.0, 1.0);
+               calculateEENormal(np11, np12, np21, np22, out_normal);
+               if(*out_a1 > .5)
+               {
+                       if(*out_a2 > .5)
+                       {
+                               VECSUB(temp, np12, np22);
+                       }
+                       else
+                       {
+                               VECSUB(temp, np12, np21);
+                       }
+               }
+               else
+               {
+                       if(*out_a2 > .5)
+                       {
+                               VECSUB(temp, np11, np22);
+                       }
+                       else
+                       {
+                               VECSUB(temp, np11, np21);
+                       }
+               }
+
+               return INPR(temp, temp);
+       }
+       else
+       {
+               
+               // If the lines aren't parallel (but coplanar) they have to intersect
+
+               findClosestPointsEE(np11, np12, np21, np22, out_a1, out_a2);
+
+               // If both points are on the finite edges, we're done.
+               if (*out_a1 >= 0.0 && *out_a1 <= 1.0 && *out_a2 >= 0.0 && *out_a2 <= 1.0) 
+               {
+                       float p1[3], p2[3];
+                       
+                       // p1= np11 + (np12 - np11) * out_a1;
+                       VECSUB(temp, np12, np11);
+                       VecMulf(temp, *out_a1);
+                       VECADD(p1, np11, temp);
+                       
+                       // p2 = np21 + (np22 - np21) * out_a2;
+                       VECSUB(temp, np22, np21);
+                       VecMulf(temp, *out_a2);
+                       VECADD(p2, np21, temp);
+
+                       calculateEENormal(np11, np12, np21, np22, out_normal);
+                       VECSUB(temp, p1, p2);
+                       return INPR(temp, temp);
+               }
+
+               
+               /*
+               * Clamp both points to the finite edges.
+               * The one that moves most during clamping is one part of the solution.
+               */
+               dist_a1 = *out_a1;
+               CLAMP(dist_a1, 0.0, 1.0);
+               dist_a2 = *out_a2;
+               CLAMP(dist_a2, 0.0, 1.0);
+
+               // Now project the "most clamped" point on the other line.
+               if (dist_a1 > dist_a2) 
+               { 
+                       /* keep out_a1 */
+                       float p1[3];
+
+                       // p1 = np11 + (np12 - np11) * out_a1;
+                       VECSUB(temp, np12, np11);
+                       VecMulf(temp, *out_a1);
+                       VECADD(p1, np11, temp);
+
+                       *out_a2 = projectPointOntoLine(p1, np21, np22);
+                       CLAMP(*out_a2, 0.0, 1.0);
+
+                       calculateEENormal(np11, np12, np21, np22, out_normal);
+
+                       // return (p1 - (np21 + (np22 - np21) * out_a2)).lengthSquared();
+                       VECSUB(temp, np22, np21);
+                       VecMulf(temp, *out_a2);
+                       VECADD(temp, temp, np21);
+                       VECSUB(temp, p1, temp);
+                       return INPR(temp, temp);
+               } 
+               else 
+               {       
+                       /* keep out_a2 */
+                       float p2[3];
+                       
+                       // p2 = np21 + (np22 - np21) * out_a2;
+                       VECSUB(temp, np22, np21);
+                       VecMulf(temp, *out_a2);
+                       VECADD(p2, np21, temp);
+
+                       *out_a1 = projectPointOntoLine(p2, np11, np12);
+                       CLAMP(*out_a1, 0.0, 1.0);
+
+                       calculateEENormal(np11, np12, np21, np22, out_normal);
+                       
+                       // return ((np11 + (np12 - np11) * out_a1) - p2).lengthSquared();
+                       VECSUB(temp, np12, np11);
+                       VecMulf(temp, *out_a1);
+                       VECADD(temp, temp, np11);
+                       VECSUB(temp, temp, p2);
+                       return INPR(temp, temp);
+               }
+       }
+       
+       printf("Error in edgedge_distance: end of function\n");
+       return 0;
+}
+
+static int cloth_collision_moving_edges ( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair )
 {
        EdgeCollPair edgecollpair;
        Cloth *cloth1=NULL;
        ClothVertex *verts1=NULL;
-       unsigned int i = 0, j = 0, k = 0;
+       unsigned int i = 0, k = 0;
        int numsolutions = 0;
        double x1[3], v1[3], x2[3], v2[3], x3[3], v3[3];
-       double solution[3];
+       double solution[3], solution2[3];
        MVert *verts2 = collmd->current_x; // old x
        MVert *velocity2 = collmd->current_v; // velocity
-       float mintime = FLT_MAX;
-       float distance;
+       float distance = 0;
        float triA[3][3], triB[3][3];
        int result = 0;
 
        cloth1 = clmd->clothObject;
        verts1 = cloth1->verts;
-       
+
        for(i = 0; i < 9; i++)
        {
                // 9 edge - edge possibilities
-               
+
                if(i == 0) // cloth edge: 1-2; coll edge: 1-2
                {
                        edgecollpair.p11 = collpair->ap1;
                        edgecollpair.p12 = collpair->ap2;
-                       
+
                        edgecollpair.p21 = collpair->bp1;
                        edgecollpair.p22 = collpair->bp2;
                }
@@ -907,7 +1099,7 @@ int cloth_collision_moving_edges ( ClothModifierData *clmd, CollisionModifierDat
                {
                        edgecollpair.p11 = collpair->ap1;
                        edgecollpair.p12 = collpair->ap2;
-                       
+
                        edgecollpair.p21 = collpair->bp2;
                        edgecollpair.p22 = collpair->bp3;
                }
@@ -915,7 +1107,7 @@ int cloth_collision_moving_edges ( ClothModifierData *clmd, CollisionModifierDat
                {
                        edgecollpair.p11 = collpair->ap1;
                        edgecollpair.p12 = collpair->ap2;
-                       
+
                        edgecollpair.p21 = collpair->bp1;
                        edgecollpair.p22 = collpair->bp3;
                }
@@ -923,7 +1115,7 @@ int cloth_collision_moving_edges ( ClothModifierData *clmd, CollisionModifierDat
                {
                        edgecollpair.p11 = collpair->ap2;
                        edgecollpair.p12 = collpair->ap3;
-                       
+
                        edgecollpair.p21 = collpair->bp1;
                        edgecollpair.p22 = collpair->bp2;
                }
@@ -931,7 +1123,7 @@ int cloth_collision_moving_edges ( ClothModifierData *clmd, CollisionModifierDat
                {
                        edgecollpair.p11 = collpair->ap2;
                        edgecollpair.p12 = collpair->ap3;
-                       
+
                        edgecollpair.p21 = collpair->bp2;
                        edgecollpair.p22 = collpair->bp3;
                }
@@ -939,7 +1131,7 @@ int cloth_collision_moving_edges ( ClothModifierData *clmd, CollisionModifierDat
                {
                        edgecollpair.p11 = collpair->ap2;
                        edgecollpair.p12 = collpair->ap3;
-                       
+
                        edgecollpair.p21 = collpair->bp1;
                        edgecollpair.p22 = collpair->bp3;
                }
@@ -947,7 +1139,7 @@ int cloth_collision_moving_edges ( ClothModifierData *clmd, CollisionModifierDat
                {
                        edgecollpair.p11 = collpair->ap1;
                        edgecollpair.p12 = collpair->ap3;
-                       
+
                        edgecollpair.p21 = collpair->bp1;
                        edgecollpair.p22 = collpair->bp2;
                }
@@ -955,7 +1147,7 @@ int cloth_collision_moving_edges ( ClothModifierData *clmd, CollisionModifierDat
                {
                        edgecollpair.p11 = collpair->ap1;
                        edgecollpair.p12 = collpair->ap3;
-                       
+
                        edgecollpair.p21 = collpair->bp2;
                        edgecollpair.p22 = collpair->bp3;
                }
@@ -963,241 +1155,270 @@ int cloth_collision_moving_edges ( ClothModifierData *clmd, CollisionModifierDat
                {
                        edgecollpair.p11 = collpair->ap1;
                        edgecollpair.p12 = collpair->ap3;
-                       
+
                        edgecollpair.p21 = collpair->bp1;
                        edgecollpair.p22 = collpair->bp3;
                }
-               
-               if ( !cloth_are_edges_adjacent ( clmd, collmd, &edgecollpair ) )
+               /*
+               if((edgecollpair.p11 == 3) && (edgecollpair.p12 == 16))
+                       printf("Ahier!\n");
+               if((edgecollpair.p11 == 16) && (edgecollpair.p12 == 3))
+                       printf("Ahier!\n");
+               */
+
+               // if ( !cloth_are_edges_adjacent ( clmd, collmd, &edgecollpair ) )
                {
                        // always put coll points in p21/p22
                        VECSUB ( x1, verts1[edgecollpair.p12].txold, verts1[edgecollpair.p11].txold );
                        VECSUB ( v1, verts1[edgecollpair.p12].tv, verts1[edgecollpair.p11].tv );
-                       
+
                        VECSUB ( x2, verts2[edgecollpair.p21].co, verts1[edgecollpair.p11].txold );
                        VECSUB ( v2, velocity2[edgecollpair.p21].co, verts1[edgecollpair.p11].tv );
-                       
+
                        VECSUB ( x3, verts2[edgecollpair.p22].co, verts1[edgecollpair.p11].txold );
                        VECSUB ( v3, velocity2[edgecollpair.p22].co, verts1[edgecollpair.p11].tv );
-                       
+
                        numsolutions = cloth_get_collision_time ( x1, v1, x2, v2, x3, v3, solution );
-       
+
+                       if((edgecollpair.p11 == 3 && edgecollpair.p12==16)|| (edgecollpair.p11==16 && edgecollpair.p12==3))
+                       {
+                               if(edgecollpair.p21==6 || edgecollpair.p22 == 6)
+                               {
+                                       printf("dist: %f, sol[k]: %lf, sol2[k]: %lf\n", distance, solution[k], solution2[k]);
+                                       printf("a1: %f, a2: %f, b1: %f, b2: %f\n", x1[0], x2[0], x3[0], v1[0]);
+                                       printf("b21: %d, b22: %d\n", edgecollpair.p21, edgecollpair.p22);
+                               }
+                       }
+
                        for ( k = 0; k < numsolutions; k++ )
                        {
                                // printf("sol %d: %lf\n", k, solution[k]);
-                               if ( ( solution[k] >= DBL_EPSILON ) && ( solution[k] <= 1.0 ) )
+                               if ( ( solution[k] >= ALMOST_ZERO ) && ( solution[k] <= 1.0 ) && ( solution[k] >  ALMOST_ZERO))
                                {
-                                       //float out_collisionTime = solution[k];
-       
+                                       float a,b;
+                                       float out_normal[3];
+                                       float distance;
+                                       float impulse = 0;
+                                       float I_mag;
+
+                                       // move verts
+                                       VECADDS(triA[0], verts1[edgecollpair.p11].txold, verts1[edgecollpair.p11].tv, solution[k]);
+                                       VECADDS(triA[1], verts1[edgecollpair.p12].txold, verts1[edgecollpair.p12].tv, solution[k]);
+
+                                       VECADDS(triB[0], collmd->current_x[edgecollpair.p21].co, collmd->current_v[edgecollpair.p21].co, solution[k]);
+                                       VECADDS(triB[1], collmd->current_x[edgecollpair.p22].co, collmd->current_v[edgecollpair.p22].co, solution[k]);
+
                                        // TODO: check for collisions
-       
-                                       // TODO: put into (edge) collision list
+                                       distance = edgedge_distance(triA[0], triA[1], triB[0], triB[1], &a, &b, out_normal);
                                        
-                                       mintime = MIN2(mintime, (float)solution[k]);
-                                       
-                                       result = 1;
+                                       if ((distance <= clmd->coll_parms->epsilon + BLI_bvhtree_getepsilon ( collmd->bvhtree ) + ALMOST_ZERO) && (INPR(out_normal, out_normal) > 0))
+                                       {
+                                               float vrel_1_to_2[3], temp[3], temp2[3], out_normalVelocity;
+                                               float desiredVn;
+
+                                               VECCOPY(vrel_1_to_2, verts1[edgecollpair.p11].tv);
+                                               VecMulf(vrel_1_to_2, 1.0 - a);
+                                               VECCOPY(temp, verts1[edgecollpair.p12].tv);
+                                               VecMulf(temp, a);
+
+                                               VECADD(vrel_1_to_2, vrel_1_to_2, temp);
+
+                                               VECCOPY(temp, verts1[edgecollpair.p21].tv);
+                                               VecMulf(temp, 1.0 - b);
+                                               VECCOPY(temp2, verts1[edgecollpair.p22].tv);
+                                               VecMulf(temp2, b);
+                                               VECADD(temp, temp, temp2);
+
+                                               VECSUB(vrel_1_to_2, vrel_1_to_2, temp);
+
+                                               out_normalVelocity = INPR(vrel_1_to_2, out_normal);
+/*
+                                               // this correction results in wrong normals sometimes?
+                                               if(out_normalVelocity < 0.0)
+                                               {
+                                                       out_normalVelocity*= -1.0;
+                                                       VecNegf(out_normal);
+                                               }
+*/
+                                               /* Inelastic repulsion impulse. */
+
+                                               // Calculate which normal velocity we need. 
+                                               desiredVn = (out_normalVelocity * (float)solution[k] - (.1 * (clmd->coll_parms->epsilon + BLI_bvhtree_getepsilon ( collmd->bvhtree )) - sqrt(distance)) - ALMOST_ZERO);
+
+                                               // Now calculate what impulse we need to reach that velocity. 
+                                               I_mag = (out_normalVelocity - desiredVn) / 2.0; // / (1/m1 + 1/m2);
+
+                                               // Finally apply that impulse. 
+                                               impulse = (2.0 * -I_mag) / (a*a + (1.0-a)*(1.0-a) + b*b + (1.0-b)*(1.0-b));
+
+                                               VECADDMUL ( verts1[edgecollpair.p11].impulse, out_normal, (1.0-a) * impulse );
+                                               verts1[edgecollpair.p11].impulse_count++;
+
+                                               VECADDMUL ( verts1[edgecollpair.p12].impulse, out_normal, a * impulse );
+                                               verts1[edgecollpair.p12].impulse_count++;
+
+                                               // return true;
+                                               result = 1;
+                                               break;
+                                       }
+                                       else
+                                       {
+                                               // missing from collision.hpp
+                                       }
+                                       // mintime = MIN2(mintime, (float)solution[k]);
+
                                        break;
                                }
                        }
                }
        }
-       
-       if(result)
-       {
-               // move triangles to collision point in time
-               VECADDS(triA[0], verts1[collpair->ap1].txold, verts1[collpair->ap1].tv, mintime);
-               VECADDS(triA[1], verts1[collpair->ap2].txold, verts1[collpair->ap2].tv, mintime);
-               VECADDS(triA[2], verts1[collpair->ap3].txold, verts1[collpair->ap3].tv, mintime);
-               
-               VECADDS(triB[0], collmd->current_x[collpair->bp1].co, collmd->current_v[collpair->bp1].co, mintime);
-               VECADDS(triB[1], collmd->current_x[collpair->bp2].co, collmd->current_v[collpair->bp2].co, mintime);
-               VECADDS(triB[2], collmd->current_x[collpair->bp3].co, collmd->current_v[collpair->bp3].co, mintime);
-               
-               // check distance there
-               distance = plNearestPoints (triA[0], triA[1], triA[2], triB[0], triB[1], triB[2], collpair->pa,collpair->pb,collpair->vector );
-               
-               if(distance <= (clmd->coll_parms->epsilon + BLI_bvhtree_getepsilon ( collmd->bvhtree ) + ALMOST_ZERO))
-               {
-                       CollPair *next = collpair;
-                       next++;
-                       
-                       collpair->distance = clmd->coll_parms->epsilon;
-                       collpair->time = mintime;
-                       
-                       VECCOPY ( collpair->normal, collpair->vector );
-                       Normalize ( collpair->normal );
-                       
-                       cloth_collision_response_moving ( clmd, collmd, collpair, next );
-               }
-       }
-       
        return result;
 }
 
-/*
-void cloth_collision_moving_tris ( ClothModifierData *clmd, ClothModifierData *coll_clmd, CollisionTree *tree1, CollisionTree *tree2 )
+static int cloth_collision_moving ( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair, CollPair *collision_end )
 {
-       CollPair collpair;
-       Cloth *cloth1=NULL, *cloth2=NULL;
-       MFace *face1=NULL, *face2=NULL;
-       ClothVertex *verts1=NULL, *verts2=NULL;
-       unsigned int i = 0, j = 0, k = 0;
-       int numsolutions = 0;
-       float a[3], b[3], c[3], d[3], e[3], f[3];
-       double solution[3];
+       Cloth *cloth1;
+       cloth1 = clmd->clothObject;
 
-       for ( i = 0; i < 2; i++ )
+       for ( ; collpair != collision_end; collpair++ )
        {
-               cloth1 = clmd->clothObject;
-               cloth2 = coll_clmd->clothObject;
+               // only handle moving collisions here
+               if (!( collpair->flag & COLLISION_IN_FUTURE ))
+                       continue;
 
-               verts1 = cloth1->verts;
-               verts2 = cloth2->verts;
+               cloth_collision_moving_edges ( clmd, collmd, collpair);
+               // cloth_collision_moving_tris ( clmd, collmd, collpair);
+       }
 
-               face1 = & ( cloth1->mfaces[tree1->tri_index] );
-               face2 = & ( cloth2->mfaces[tree2->tri_index] );
+       return 1;
+}
 
-               // check all possible pairs of triangles
-               if ( i == 0 )
-               {
-                       collpair.ap1 = face1->v1;
-                       collpair.ap2 = face1->v2;
-                       collpair.ap3 = face1->v3;
-
-                       collpair.pointsb[0] = face2->v1;
-                       collpair.pointsb[1] = face2->v2;
-                       collpair.pointsb[2] = face2->v3;
-                       collpair.pointsb[3] = face2->v4;
-               }
 
-               if ( i == 1 )
+// return all collision objects in scene
+// collision object will exclude self 
+CollisionModifierData **get_collisionobjects(Scene *scene, Object *self, int *numcollobj)
+{
+       Base *base=NULL;
+       CollisionModifierData **objs = NULL;
+       Object *coll_ob = NULL;
+       CollisionModifierData *collmd = NULL;
+       int numobj = 0, maxobj = 100;
+       
+       objs = MEM_callocN(sizeof(CollisionModifierData *)*maxobj, "CollisionObjectsArray");
+       // check all collision objects
+       for ( base = scene->base.first; base; base = base->next )
+       {
+               /*Only proceed for mesh object in same layer */
+               if(!(base->object->type==OB_MESH && (base->lay & self->lay))) 
+                       continue;
+               
+               coll_ob = base->object;
+               
+               if(coll_ob == self)
+                               continue;
+               
+               if(coll_ob->pd && coll_ob->pd->deflect)
                {
-                       if ( face1->v4 )
+                       collmd = ( CollisionModifierData * ) modifiers_findByType ( coll_ob, eModifierType_Collision );
+               }
+               else
+                       collmd = NULL;
+               
+               if ( collmd )
+               {       
+                       if(numobj >= maxobj)
                        {
-                               collpair.ap1 = face1->v3;
-                               collpair.ap2 = face1->v4;
-                               collpair.ap3 = face1->v1;
-
-                               collpair.pointsb[0] = face2->v1;
-                               collpair.pointsb[1] = face2->v2;
-                               collpair.pointsb[2] = face2->v3;
-                               collpair.pointsb[3] = face2->v4;
+                               // realloc
+                               int oldmax = maxobj;
+                               CollisionModifierData **tmp;
+                               maxobj *= 2;
+                               tmp = MEM_callocN(sizeof(CollisionModifierData *)*maxobj, "CollisionObjectsArray");
+                               memcpy(tmp, objs, sizeof(CollisionModifierData *)*oldmax);
+                               MEM_freeN(objs);
+                               objs = tmp;
+                               
                        }
-                       else
-                               i++;
+                       
+                       objs[numobj] = collmd;
+                       numobj++;
                }
-
-               // calc SIPcode (?)
-
-               if ( i < 2 )
+               else
                {
-                       VECSUB ( a, verts1[collpair.ap2].xold, verts1[collpair.ap1].xold );
-                       VECSUB ( b, verts1[collpair.ap2].v, verts1[collpair.ap1].v );
-                       VECSUB ( c, verts1[collpair.ap3].xold, verts1[collpair.ap1].xold );
-                       VECSUB ( d, verts1[collpair.ap3].v, verts1[collpair.ap1].v );
-
-                       for ( j = 0; j < 4; j++ )
+                       if ( coll_ob->dup_group )
                        {
-                               if ( ( j==3 ) && ! ( face2->v4 ) )
-                                       break;
+                               GroupObject *go;
+                               Group *group = coll_ob->dup_group;
 
-                               VECSUB ( e, verts2[collpair.pointsb[j]].xold, verts1[collpair.ap1].xold );
-                               VECSUB ( f, verts2[collpair.pointsb[j]].v, verts1[collpair.ap1].v );
-
-                               numsolutions = cloth_get_collision_time ( a, b, c, d, e, f, solution );
-
-                               for ( k = 0; k < numsolutions; k++ )
+                               for ( go= group->gobject.first; go; go= go->next )
                                {
-                                       if ( ( solution[k] >= ALMOST_ZERO ) && ( solution[k] <= 1.0 ) )
+                                       coll_ob = go->ob;
+                                       collmd = NULL;
+                                       
+                                       if(coll_ob == self)
+                                               continue;
+                                       
+                                       if(coll_ob->pd && coll_ob->pd->deflect)
                                        {
-                                               //float out_collisionTime = solution[k];
-
-                                               // TODO: check for collisions
-
-                                               // TODO: put into (point-face) collision list
+                                               collmd = ( CollisionModifierData * ) modifiers_findByType ( coll_ob, eModifierType_Collision );
+                                       }
+                                       else
+                                               collmd = NULL;
 
-                                               // printf("Moving found!\n");
+                                       if ( !collmd )
+                                               continue;
+                                       
+                                       if( !collmd->bvhtree)
+                                               continue;
 
+                                       if(numobj >= maxobj)
+                                       {
+                                               // realloc
+                                               int oldmax = maxobj;
+                                               CollisionModifierData **tmp;
+                                               maxobj *= 2;
+                                               tmp = MEM_callocN(sizeof(CollisionModifierData *)*maxobj, "CollisionObjectsArray");
+                                               memcpy(tmp, objs, sizeof(CollisionModifierData *)*oldmax);
+                                               MEM_freeN(objs);
+                                               objs = tmp;
                                        }
+                                       
+                                       objs[numobj] = collmd;
+                                       numobj++;
                                }
-
-                               // TODO: check borders for collisions
                        }
-
-               }
+               }       
        }
+       *numcollobj = numobj;
+       return objs;
 }
-*/
 
-int cloth_collision_moving ( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair, CollPair *collision_end )
+static void cloth_bvh_objcollisions_nearcheck ( ClothModifierData * clmd, CollisionModifierData *collmd, CollPair **collisions, CollPair **collisions_index, int numresult, BVHTreeOverlap *overlap)
 {
-       int result = 0;
-       Cloth *cloth1;
-       float w1, w2, w3, u1, u2, u3;
-       float v1[3], v2[3], relativeVelocity[3];
-       float magrelVel;
-       float epsilon2 = BLI_bvhtree_getepsilon ( collmd->bvhtree );
-
-       cloth1 = clmd->clothObject;
+       int i;
+       
+       *collisions = ( CollPair* ) MEM_mallocN ( sizeof ( CollPair ) * numresult * 4, "collision array" ); //*4 since cloth_collision_static can return more than 1 collision
+       *collisions_index = *collisions;
 
-       for ( ; collpair != collision_end; collpair++ )
+       for ( i = 0; i < numresult; i++ )
        {
-               // only handle moving collisions here
-               if (!( collpair->flag & COLLISION_IN_FUTURE ))
-                       continue;
-               
-               cloth_collision_moving_edges ( clmd, collmd, collpair);
+               *collisions_index = cloth_collision ( ( ModifierData * ) clmd, ( ModifierData * ) collmd, overlap+i, *collisions_index );
        }
-       
-       return 1;
 }
 
-int cloth_bvh_objcollisions_do ( ClothModifierData * clmd, CollisionModifierData *collmd, float step, float dt )
+static int cloth_bvh_objcollisions_resolve ( ClothModifierData * clmd, CollisionModifierData *collmd, CollPair *collisions, CollPair *collisions_index)
 {
        Cloth *cloth = clmd->clothObject;
-       BVHTree *cloth_bvh= ( BVHTree * ) cloth->bvhtree;
-       long i=0, j = 0, numfaces = 0, numverts = 0;
+       int i=0, j = 0, numfaces = 0, numverts = 0;
        ClothVertex *verts = NULL;
-       CollPair *collisions = NULL, *collisions_index = NULL;
        int ret = 0;
        int result = 0;
        float tnull[3] = {0,0,0};
-       BVHTreeOverlap *overlap = NULL;
-
-
+       
        numfaces = clmd->clothObject->numfaces;
        numverts = clmd->clothObject->numverts;
-
        verts = cloth->verts;
-
-       if ( collmd->bvhtree )
-       {
-               /* get pointer to bounding volume hierarchy */
-               BVHTree *coll_bvh = collmd->bvhtree;
-
-               /* move object to position (step) in time */
-               collision_move_object ( collmd, step + dt, step );
-
-               /* search for overlapping collision pairs */
-               overlap = BLI_bvhtree_overlap ( cloth_bvh, coll_bvh, &result );
-
-               collisions = ( CollPair* ) MEM_mallocN ( sizeof ( CollPair ) * result*4, "collision array" ); //*4 since cloth_collision_static can return more than 1 collision
-               collisions_index = collisions;
-
-               for ( i = 0; i < result; i++ )
-               {
-                       collisions_index = cloth_collision ( ( ModifierData * ) clmd, ( ModifierData * ) collmd, overlap+i, collisions_index );
-               }
-
-               if ( overlap )
-                       MEM_freeN ( overlap );
-       }
-       else
-       {
-               if ( G.rt > 0 )
-                       printf ( "cloth_bvh_objcollision: found a collision object with clothObject or collData NULL.\n" );
-       }
-
+       
        // process all collisions (calculate impulses, TODO: also repulses if distance too short)
        result = 1;
        for ( j = 0; j < 5; j++ ) // 5 is just a value that ensures convergence
@@ -1219,53 +1440,27 @@ int cloth_bvh_objcollisions_do ( ClothModifierData * clmd, CollisionModifierData
                                                VECADDMUL ( verts[i].tv, verts[i].impulse, 1.0f / verts[i].impulse_count );
                                                VECCOPY ( verts[i].impulse, tnull );
                                                verts[i].impulse_count = 0;
-       
-                                               ret++;
-                                       }
-                               }
-                       }
-                       /*
-                       result += cloth_collision_moving ( clmd, collmd, collisions, collisions_index );
-                       
-                       // apply impulses in parallel
-                       if ( result )
-                       {
-                               for ( i = 0; i < numverts; i++ )
-                               {
-                                       // calculate "velocities" (just xnew = xold + v; no dt in v)
-                                       if ( verts[i].impulse_count )
-                                       {
-                                               VECADDMUL ( verts[i].tv, verts[i].impulse, 1.0f / verts[i].impulse_count );
-                                               VECCOPY ( verts[i].impulse, tnull );
-                                               verts[i].impulse_count = 0;
-       
+
                                                ret++;
                                        }
                                }
                        }
-               */
                }
        }
-
-       if ( collisions ) MEM_freeN ( collisions );
-
        return ret;
 }
 
 // cloth - object collisions
-int cloth_bvh_objcollision ( ClothModifierData * clmd, float step, float dt )
+int cloth_bvh_objcollision (Object *ob, ClothModifierData * clmd, float step, float dt )
 {
-       Base *base=NULL;
-       CollisionModifierData *collmd=NULL;
        Cloth *cloth=NULL;
-       Object *coll_ob=NULL;
        BVHTree *cloth_bvh=NULL;
-       long i=0, j = 0, numfaces = 0, numverts = 0;
-       unsigned int result = 0, rounds = 0; // result counts applied collisions; ic is for debug output;
+       int i=0, numfaces = 0, numverts = 0, k, l, j;
+       int rounds = 0; // result counts applied collisions; ic is for debug output;
        ClothVertex *verts = NULL;
-       int ret = 0;
-       ClothModifierData *tclmd;
-       int collisions = 0, count = 0;
+       int ret = 0, ret2 = 0;
+       CollisionModifierData **collobjs = NULL;
+       int numcollobj = 0;
 
        if ( ( clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_COLLOBJ ) || ! ( ( ( Cloth * ) clmd->clothObject )->bvhtree ) )
        {
@@ -1284,51 +1479,65 @@ int cloth_bvh_objcollision ( ClothModifierData * clmd, float step, float dt )
 
        // update cloth bvh
        bvhtree_update_from_cloth ( clmd, 1 ); // 0 means STATIC, 1 means MOVING (see later in this function)
+       bvhselftree_update_from_cloth ( clmd, 0 ); // 0 means STATIC, 1 means MOVING (see later in this function)
+       
+       collobjs = get_collisionobjects(clmd->scene, ob, &numcollobj);
+       
+       if(!collobjs)
+               return 0;
 
        do
        {
-               result = 0;
+               CollPair **collisions, **collisions_index;
+               
+               ret2 = 0;
 
+               collisions = MEM_callocN(sizeof(CollPair *) *numcollobj , "CollPair");
+               collisions_index = MEM_callocN(sizeof(CollPair *) *numcollobj , "CollPair");
+               
                // check all collision objects
-               for ( base = G.scene->base.first; base; base = base->next )
+               for(i = 0; i < numcollobj; i++)
                {
-                       coll_ob = base->object;
-                       collmd = ( CollisionModifierData * ) modifiers_findByType ( coll_ob, eModifierType_Collision );
-
-                       if ( !collmd )
-                       {
-                               if ( coll_ob->dup_group )
-                               {
-                                       GroupObject *go;
-                                       Group *group = coll_ob->dup_group;
-
-                                       for ( go= group->gobject.first; go; go= go->next )
-                                       {
-                                               coll_ob = go->ob;
-
-                                               collmd = ( CollisionModifierData * ) modifiers_findByType ( coll_ob, eModifierType_Collision );
-
-                                               if ( !collmd )
-                                                       continue;
-
-                                               tclmd = ( ClothModifierData * ) modifiers_findByType ( coll_ob, eModifierType_Cloth );
-                                               if ( tclmd == clmd )
-                                                       continue;
-
-                                               ret += cloth_bvh_objcollisions_do ( clmd, collmd, step, dt );
-                                       }
-                               }
-                       }
-                       else
+                       CollisionModifierData *collmd = collobjs[i];
+                       BVHTreeOverlap *overlap = NULL;
+                       int result = 0;
+                       
+                       if(!collmd->bvhtree)
+                               continue;
+                       
+                       /* move object to position (step) in time */
+                       collision_move_object ( collmd, step + dt, step );
+                       
+                       /* search for overlapping collision pairs */
+                       overlap = BLI_bvhtree_overlap ( cloth_bvh, collmd->bvhtree, &result );
+                               
+                       // go to next object if no overlap is there
+                       if(!result || !overlap)
                        {
-                               tclmd = ( ClothModifierData * ) modifiers_findByType ( coll_ob, eModifierType_Cloth );
-                               if ( tclmd == clmd )
-                                       continue;
-
-                               ret += cloth_bvh_objcollisions_do ( clmd, collmd, step, dt );
+                               if ( overlap )
+                                       MEM_freeN ( overlap );
+                               continue;
                        }
+                       
+                       /* check if collisions really happen (costly near check) */
+                       cloth_bvh_objcollisions_nearcheck ( clmd, collmd, &collisions[i], &collisions_index[i], result, overlap);
+                       
+                       // resolve nearby collisions
+                       ret += cloth_bvh_objcollisions_resolve ( clmd, collmd, collisions[i],  collisions_index[i]);
+                       ret2 += ret;
+                       
+                       if ( overlap )
+                               MEM_freeN ( overlap );
                }
                rounds++;
+               
+               for(i = 0; i < numcollobj; i++)
+               {
+                       if ( collisions[i] ) MEM_freeN ( collisions[i] );
+               }
+                       
+               MEM_freeN(collisions);
+               MEM_freeN(collisions_index);
 
                ////////////////////////////////////////////////////////////
                // update positions
@@ -1349,111 +1558,122 @@ int cloth_bvh_objcollision ( ClothModifierData * clmd, float step, float dt )
                        VECADD ( verts[i].tx, verts[i].txold, verts[i].tv );
                }
                ////////////////////////////////////////////////////////////
-
-
+               
+               
                ////////////////////////////////////////////////////////////
                // Test on *simple* selfcollisions
                ////////////////////////////////////////////////////////////
                if ( clmd->coll_parms->flags & CLOTH_COLLSETTINGS_FLAG_SELF )
                {
-
-                       MFace *mface = clmd->clothObject->mfaces;
-
-                       collisions = 1;
-                       verts = cloth->verts; // needed for openMP
-
-
-
-                       /*
-                       for ( count = 0; count < clmd->coll_parms->self_loop_count; count++ )
-                       {
-                       if ( collisions )
-                       {
-                       collisions = 0;
-                       #pragma omp parallel for private(i,j, collisions) shared(verts, ret)
-                       for ( i = 0; i < cloth->numverts; i++ )
-                       {
-                       for ( j = i + 1; j < cloth->numverts; j++ )
-                       {
-                       float temp[3];
-                       float length = 0;
-                       float mindistance = clmd->coll_parms->selfepsilon* ( cloth->verts[i].avg_spring_len + cloth->verts[j].avg_spring_len );
-
-                       if ( clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_GOAL )
-                       {
-                       if ( ( cloth->verts [i].flags & CLOTH_VERT_FLAG_PINNED )
-                       && ( cloth->verts [j].flags & CLOTH_VERT_FLAG_PINNED ) )
+                       for(l = 0; l < clmd->coll_parms->self_loop_count; l++)
                        {
-                       continue;
-                       }
-                       }
-
-                       VECSUB ( temp, verts[i].tx, verts[j].tx );
-
-                       if ( ( ABS ( temp[0] ) > mindistance ) || ( ABS ( temp[1] ) > mindistance ) || ( ABS ( temp[2] ) > mindistance ) ) continue;
-
-                                                       // check for adjacent points (i must be smaller j)
-                       if ( BLI_edgehash_haskey ( cloth->edgehash, i, j ) )
-                       {
-                       continue;
-                       }
-
-                       length = Normalize ( temp );
-
-                       if ( length < mindistance )
-                       {
-                       float correction = mindistance - length;
-
-                       if ( cloth->verts [i].flags & CLOTH_VERT_FLAG_PINNED )
-                       {
-                       VecMulf ( temp, -correction );
-                       VECADD ( verts[j].tx, verts[j].tx, temp );
-                       }
-                       else if ( cloth->verts [j].flags & CLOTH_VERT_FLAG_PINNED )
-                       {
-                       VecMulf ( temp, correction );
-                       VECADD ( verts[i].tx, verts[i].tx, temp );
-                       }
-                       else
-                       {
-                       VecMulf ( temp, -correction*0.5 );
-                       VECADD ( verts[j].tx, verts[j].tx, temp );
-
-                       VECSUB ( verts[i].tx, verts[i].tx, temp );
-                       }
-
-                       collisions = 1;
-
-                       if ( !ret )
-                       {
-                       #pragma omp critical
-                       {
-                       ret = 1;
-                       }
-                       }
-                       }
-                       }
-                       }
-                       }
+                               // TODO: add coll quality rounds again
+                               BVHTreeOverlap *overlap = NULL;
+                               int result = 0;
+       
+                               // collisions = 1;
+                               verts = cloth->verts; // needed for openMP
+       
+                               numfaces = clmd->clothObject->numfaces;
+                               numverts = clmd->clothObject->numverts;
+       
+                               verts = cloth->verts;
+       
+                               if ( cloth->bvhselftree )
+                               {
+                                       // search for overlapping collision pairs 
+                                       overlap = BLI_bvhtree_overlap ( cloth->bvhselftree, cloth->bvhselftree, &result );
+       
+       // #pragma omp parallel for private(k, i, j) schedule(static)
+                                       for ( k = 0; k < result; k++ )
+                                       {
+                                               float temp[3];
+                                               float length = 0;
+                                               float mindistance;
+       
+                                               i = overlap[k].indexA;
+                                               j = overlap[k].indexB;
+       
+                                               mindistance = clmd->coll_parms->selfepsilon* ( cloth->verts[i].avg_spring_len + cloth->verts[j].avg_spring_len );
+       
+                                               if ( clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_GOAL )
+                                               {
+                                                       if ( ( cloth->verts [i].flags & CLOTH_VERT_FLAG_PINNED )
+                                                                               && ( cloth->verts [j].flags & CLOTH_VERT_FLAG_PINNED ) )
+                                                       {
+                                                               continue;
+                                                       }
+                                               }
+       
+                                               VECSUB ( temp, verts[i].tx, verts[j].tx );
+       
+                                               if ( ( ABS ( temp[0] ) > mindistance ) || ( ABS ( temp[1] ) > mindistance ) || ( ABS ( temp[2] ) > mindistance ) ) continue;
+       
+                                               // check for adjacent points (i must be smaller j)
+                                               if ( BLI_edgehash_haskey ( cloth->edgehash, MIN2(i, j), MAX2(i, j) ) )
+                                               {
+                                                       continue;
+                                               }
+       
+                                               length = Normalize ( temp );
+       
+                                               if ( length < mindistance )
+                                               {
+                                                       float correction = mindistance - length;
+       
+                                                       if ( cloth->verts [i].flags & CLOTH_VERT_FLAG_PINNED )
+                                                       {
+                                                               VecMulf ( temp, -correction );
+                                                               VECADD ( verts[j].tx, verts[j].tx, temp );
+                                                       }
+                                                       else if ( cloth->verts [j].flags & CLOTH_VERT_FLAG_PINNED )
+                                                       {
+                                                               VecMulf ( temp, correction );
+                                                               VECADD ( verts[i].tx, verts[i].tx, temp );
+                                                       }
+                                                       else
+                                                       {
+                                                               VecMulf ( temp, -correction*0.5 );
+                                                               VECADD ( verts[j].tx, verts[j].tx, temp );
+       
+                                                               VECSUB ( verts[i].tx, verts[i].tx, temp );
+                                                       }
+                                                       ret = 1;
+                                                       ret2 += ret;
+                                               }
+                                               else
+                                               {
+                                                       // check for approximated time collisions
+                                               }
+                                       }
+       
+                                       if ( overlap )
+                                               MEM_freeN ( overlap );
+       
+                               }
                        }
-                       */
                        ////////////////////////////////////////////////////////////
 
                        ////////////////////////////////////////////////////////////
                        // SELFCOLLISIONS: update velocities
                        ////////////////////////////////////////////////////////////
-                       if ( ret )
+                       if ( ret2 )
                        {
                                for ( i = 0; i < cloth->numverts; i++ )
                                {
-                                       if ( ! ( cloth->verts [i].flags & CLOTH_VERT_FLAG_PINNED ) )
+                                       if ( ! ( verts [i].flags & CLOTH_VERT_FLAG_PINNED ) )
+                                       {
                                                VECSUB ( verts[i].tv, verts[i].tx, verts[i].txold );
+                                       }
                                }
                        }
                        ////////////////////////////////////////////////////////////
                }
        }
-       while ( result && ( clmd->coll_parms->loop_count>rounds ) );
+       while ( ret2 && ( clmd->coll_parms->loop_count>rounds ) );
+       
+       if(collobjs)
+               MEM_freeN(collobjs);
 
        return MIN2 ( ret, 1 );
 }