#include "BLI_memarena.h"
#include "BLI_arithb.h"
#include "BLI_rand.h"
+#include "BLI_heap.h"
+#include "BLI_boxpack2d.h"
#include "BKE_utildefines.h"
#define M_PI 3.14159265358979323846
#endif
-/* Hash */
+/* PHash
+ - special purpose hash that keeps all its elements in a single linked list.
+ - after construction, this hash is thrown away, and the list remains.
+ - removing elements is not possible efficiently.
+*/
static int PHashSizes[] = {
1, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031, 2053, 4099, 8209,
};
#define PHASH_hash(ph, item) (((unsigned long) (item))%((unsigned int) (ph)->cursize))
+#define PHASH_edge(v1, v2) ((v1)^(v2))
-PHash *phash_new(int sizehint)
+static PHash *phash_new(PHashLink **list, int sizehint)
{
PHash *ph = (PHash*)MEM_callocN(sizeof(PHash), "PHash");
ph->size = 0;
ph->cursize_id = 0;
- ph->first = NULL;
+ ph->list = list;
while (PHashSizes[ph->cursize_id] < sizehint)
ph->cursize_id++;
return ph;
}
-void phash_delete(PHash *ph)
+static void phash_delete(PHash *ph)
{
MEM_freeN(ph->buckets);
MEM_freeN(ph);
}
-void phash_delete_with_links(PHash *ph)
-{
- PHashLink *link, *next=NULL;
-
- for (link = ph->first; link; link = next) {
- next = link->next;
- MEM_freeN(link);
- }
-
- phash_delete(ph);
-}
-
-int phash_size(PHash *ph)
+static int phash_size(PHash *ph)
{
return ph->size;
}
-void phash_insert(PHash *ph, PHashLink *link)
+static void phash_insert(PHash *ph, PHashLink *link)
{
int size = ph->cursize;
int hash = PHASH_hash(ph, link->key);
if (lookup == NULL) {
/* insert in front of the list */
ph->buckets[hash] = link;
- link->next = ph->first;
- ph->first = link;
+ link->next = *(ph->list);
+ *(ph->list) = link;
}
else {
/* insert after existing element */
ph->size++;
if (ph->size > (size*3)) {
- PHashLink *next = NULL, *first = ph->first;
+ PHashLink *next = NULL, *first = *(ph->list);
ph->cursize = PHashSizes[++ph->cursize_id];
MEM_freeN(ph->buckets);
ph->buckets = (PHashLink**)MEM_callocN(ph->cursize*sizeof(*ph->buckets), "PHashBuckets");
ph->size = 0;
- ph->first = NULL;
+ *(ph->list) = NULL;
for (link = first; link; link = next) {
next = link->next;
}
}
-PHashLink *phash_lookup(PHash *ph, PHashKey key)
+static PHashLink *phash_lookup(PHash *ph, PHashKey key)
{
PHashLink *link;
int hash = PHASH_hash(ph, key);
return link;
}
-PHashLink *phash_next(PHash *ph, PHashKey key, PHashLink *link)
+static PHashLink *phash_next(PHash *ph, PHashKey key, PHashLink *link)
{
int hash = PHASH_hash(ph, key);
return link;
}
-/* Heap */
+/* Geometry */
-#define PHEAP_PARENT(i) ((i-1)>>1)
-#define PHEAP_LEFT(i) ((i<<1)+1)
-#define PHEAP_RIGHT(i) ((i<<1)+2)
-#define PHEAP_COMPARE(a, b) (a->value < b->value)
-#define PHEAP_EQUALS(a, b) (a->value == b->value)
-#define PHEAP_SWAP(heap, i, j) \
- { SWAP(int, heap->tree[i]->index, heap->tree[j]->index); \
- SWAP(PHeapLink*, heap->tree[i], heap->tree[j]); }
-
-static void pheap_down(PHeap *heap, int i)
+static float p_vec_angle_cos(float *v1, float *v2, float *v3)
{
- while (P_TRUE) {
- int size = heap->size, smallest;
- int l = PHEAP_LEFT(i);
- int r = PHEAP_RIGHT(i);
+ float d1[3], d2[3];
- smallest = ((l < size) && PHEAP_COMPARE(heap->tree[l], heap->tree[i]))? l: i;
+ d1[0] = v1[0] - v2[0];
+ d1[1] = v1[1] - v2[1];
+ d1[2] = v1[2] - v2[2];
- if ((r < size) && PHEAP_COMPARE(heap->tree[r], heap->tree[smallest]))
- smallest = r;
-
- if (smallest == i)
- break;
+ d2[0] = v3[0] - v2[0];
+ d2[1] = v3[1] - v2[1];
+ d2[2] = v3[2] - v2[2];
- PHEAP_SWAP(heap, i, smallest);
- i = smallest;
- }
+ Normalize(d1);
+ Normalize(d2);
+
+ return d1[0]*d2[0] + d1[1]*d2[1] + d1[2]*d2[2];
}
-static void pheap_up(PHeap *heap, int i)
+static float p_vec_angle(float *v1, float *v2, float *v3)
{
- while (i > 0) {
- int p = PHEAP_PARENT(i);
-
- if (PHEAP_COMPARE(heap->tree[p], heap->tree[i]))
- break;
+ float dot = p_vec_angle_cos(v1, v2, v3);
- PHEAP_SWAP(heap, p, i);
- i = p;
- }
+ if (dot <= -1.0f)
+ return (float)M_PI;
+ else if (dot >= 1.0f)
+ return 0.0f;
+ else
+ return (float)acos(dot);
}
-PHeap *pheap_new()
+static float p_vec2_angle(float *v1, float *v2, float *v3)
{
- /* TODO: replace mallocN with something faster */
+ float u1[3], u2[3], u3[3];
- PHeap *heap = (PHeap*)MEM_callocN(sizeof(PHeap), "PHeap");
- heap->bufsize = 1;
- heap->tree = (PHeapLink**)MEM_mallocN(sizeof(PHeapLink*), "PHeapTree");
+ u1[0] = v1[0]; u1[1] = v1[1]; u1[2] = 0.0f;
+ u2[0] = v2[0]; u2[1] = v2[1]; u2[2] = 0.0f;
+ u3[0] = v3[0]; u3[1] = v3[1]; u3[2] = 0.0f;
- return heap;
+ return p_vec_angle(u1, u2, u3);
}
-void pheap_delete(PHeap *heap)
+static void p_triangle_angles(float *v1, float *v2, float *v3, float *a1, float *a2, float *a3)
{
- MEM_freeN(heap->tree);
- MEM_freeN(heap);
+ *a1 = p_vec_angle(v3, v1, v2);
+ *a2 = p_vec_angle(v1, v2, v3);
+ *a3 = M_PI - *a2 - *a1;
}
-PHeapLink *pheap_insert(PHeap *heap, float value, void *ptr)
+static void p_face_angles(PFace *f, float *a1, float *a2, float *a3)
{
- PHeapLink *link;
+ PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
+ PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert;
+
+ p_triangle_angles(v1->co, v2->co, v3->co, a1, a2, a3);
+}
- if ((heap->size + 1) > heap->bufsize) {
- int newsize = heap->bufsize*2;
+static float p_face_area(PFace *f)
+{
+ PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
+ PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert;
- PHeapLink **ntree = (PHeapLink**)MEM_mallocN(newsize*sizeof(PHeapLink*), "PHeapTree");
- memcpy(ntree, heap->tree, sizeof(PHeapLink*)*heap->size);
- MEM_freeN(heap->tree);
+ return AreaT3Dfl(v1->co, v2->co, v3->co);
+}
- heap->tree = ntree;
- heap->bufsize = newsize;
- }
+static float p_area_signed(float *v1, float *v2, float *v3)
+{
+ return 0.5f*(((v2[0] - v1[0])*(v3[1] - v1[1])) -
+ ((v3[0] - v1[0])*(v2[1] - v1[1])));
+}
- param_assert(heap->size < heap->bufsize);
+static float p_face_uv_area_signed(PFace *f)
+{
+ PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
+ PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert;
- link = MEM_mallocN(sizeof *link, "PHeapLink");
- link->value = value;
- link->ptr = ptr;
- link->index = heap->size;
+ return 0.5f*(((v2->uv[0] - v1->uv[0])*(v3->uv[1] - v1->uv[1])) -
+ ((v3->uv[0] - v1->uv[0])*(v2->uv[1] - v1->uv[1])));
+}
- heap->tree[link->index] = link;
+static float p_edge_length(PEdge *e)
+{
+ PVert *v1 = e->vert, *v2 = e->next->vert;
+ float d[3];
- heap->size++;
+ d[0] = v2->co[0] - v1->co[0];
+ d[1] = v2->co[1] - v1->co[1];
+ d[2] = v2->co[2] - v1->co[2];
- pheap_up(heap, heap->size-1);
+ return sqrt(d[0]*d[0] + d[1]*d[1] + d[2]*d[2]);
+}
- return link;
+static float p_edge_uv_length(PEdge *e)
+{
+ PVert *v1 = e->vert, *v2 = e->next->vert;
+ float d[3];
+
+ d[0] = v2->uv[0] - v1->uv[0];
+ d[1] = v2->uv[1] - v1->uv[1];
+
+ return sqrt(d[0]*d[0] + d[1]*d[1]);
}
-int pheap_empty(PHeap *heap)
+static void p_chart_uv_bbox(PChart *chart, float *minv, float *maxv)
{
- return (heap->size == 0);
+ PVert *v;
+
+ INIT_MINMAX2(minv, maxv);
+
+ for (v=chart->verts; v; v=v->nextlink) {
+ DO_MINMAX2(v->uv, minv, maxv);
+ }
}
-int pheap_size(PHeap *heap)
+static void p_chart_uv_scale(PChart *chart, float scale)
{
- return heap->size;
+ PVert *v;
+
+ for (v=chart->verts; v; v=v->nextlink) {
+ v->uv[0] *= scale;
+ v->uv[1] *= scale;
+ }
}
-void *pheap_min(PHeap *heap)
+static void p_chart_uv_translate(PChart *chart, float trans[2])
{
- return heap->tree[0]->ptr;
+ PVert *v;
+
+ for (v=chart->verts; v; v=v->nextlink) {
+ v->uv[0] += trans[0];
+ v->uv[1] += trans[1];
+ }
}
-void *pheap_popmin(PHeap *heap)
+static PBool p_intersect_line_2d_dir(float *v1, float *dir1, float *v2, float *dir2, float *isect)
{
- void *ptr = heap->tree[0]->ptr;
+ float lmbda, div;
- MEM_freeN(heap->tree[0]);
+ div= dir2[0]*dir1[1] - dir2[1]*dir1[0];
- if (heap->size == 1)
- heap->size--;
- else {
- PHEAP_SWAP(heap, 0, heap->size-1);
- heap->size--;
+ if (div == 0.0f)
+ return P_FALSE;
- pheap_down(heap, 0);
- }
+ lmbda= ((v1[1]-v2[1])*dir1[0]-(v1[0]-v2[0])*dir1[1])/div;
+ isect[0] = v1[0] + lmbda*dir2[0];
+ isect[1] = v1[1] + lmbda*dir2[1];
- return ptr;
+ return P_TRUE;
}
-static void pheap_remove(PHeap *heap, PHeapLink *link)
+#if 0
+static PBool p_intersect_line_2d(float *v1, float *v2, float *v3, float *v4, float *isect)
{
- int i = link->index;
+ float dir1[2], dir2[2];
+
+ dir1[0] = v4[0] - v3[0];
+ dir1[1] = v4[1] - v3[1];
- while (i > 0) {
- int p = PHEAP_PARENT(i);
+ dir2[0] = v2[0] - v1[0];
+ dir2[1] = v2[1] - v1[1];
- PHEAP_SWAP(heap, p, i);
- i = p;
+ if (!p_intersect_line_2d_dir(v1, dir1, v2, dir2, isect)) {
+ /* parallel - should never happen in theory for polygon kernel, but
+ let's give a point nearby in case things go wrong */
+ isect[0] = (v1[0] + v2[0])*0.5f;
+ isect[1] = (v1[1] + v2[1])*0.5f;
+ return P_FALSE;
}
- pheap_popmin(heap);
+ return P_TRUE;
}
+#endif
-/* Construction */
+/* Topological Utilities */
-PEdge *p_wheel_edge_next(PEdge *e)
+static PEdge *p_wheel_edge_next(PEdge *e)
{
return e->next->next->pair;
}
-PEdge *p_wheel_edge_prev(PEdge *e)
+static PEdge *p_wheel_edge_prev(PEdge *e)
{
return (e->pair)? e->pair->next: NULL;
}
-static PVert *p_vert_add(PChart *chart, PHashKey key, float *co, PEdge *e)
-{
- PVert *v = (PVert*)BLI_memarena_alloc(chart->handle->arena, sizeof *v);
- v->co = co;
- v->link.key = key;
- v->edge = e;
- v->flag = 0;
-
- phash_insert(chart->verts, (PHashLink*)v);
-
- return v;
-}
-
-static PVert *p_vert_lookup(PChart *chart, PHashKey key, float *co, PEdge *e)
+static PEdge *p_boundary_edge_next(PEdge *e)
{
- PVert *v = (PVert*)phash_lookup(chart->verts, key);
-
- if (v)
- return v;
- else
- return p_vert_add(chart, key, co, e);
+ return e->next->vert->edge;
}
-static PVert *p_vert_copy(PChart *chart, PVert *v)
+static PEdge *p_boundary_edge_prev(PEdge *e)
{
- PVert *nv = (PVert*)BLI_memarena_alloc(chart->handle->arena, sizeof *nv);
- nv->co = v->co;
- nv->uv[0] = v->uv[0];
- nv->uv[1] = v->uv[1];
- nv->link.key = v->link.key;
- nv->edge = v->edge;
- nv->flag = v->flag;
+ PEdge *we = e, *last;
- phash_insert(chart->verts, (PHashLink*)nv);
+ do {
+ last = we;
+ we = p_wheel_edge_next(we);
+ } while (we && (we != e));
- return nv;
+ return last->next->next;
}
-static PEdge *p_edge_lookup(PChart *chart, PHashKey *vkeys)
+static PBool p_vert_interior(PVert *v)
{
- PHashKey key = vkeys[0]^vkeys[1];
- PEdge *e = (PEdge*)phash_lookup(chart->edges, key);
-
- while (e) {
- if ((e->vert->link.key == vkeys[0]) && (e->next->vert->link.key == vkeys[1]))
- return e;
- else if ((e->vert->link.key == vkeys[1]) && (e->next->vert->link.key == vkeys[0]))
- return e;
-
- e = (PEdge*)phash_next(chart->edges, key, (PHashLink*)e);
- }
-
- return NULL;
+ return (v->edge->pair != NULL);
}
static void p_face_flip(PFace *f)
e3->flag = (f3 & ~PEDGE_VERTEX_FLAGS) | (f1 & PEDGE_VERTEX_FLAGS);
}
-static void p_vert_load_pin_select_uvs(PVert *v)
+#if 0
+static void p_chart_topological_sanity_check(PChart *chart)
{
+ PVert *v;
PEdge *e;
- int nedges = 0;
-
- v->uv[0] = v->uv[1] = 0.0f;
- nedges = 0;
- e = v->edge;
- do {
- if (e->orig_uv && (e->flag & PEDGE_PIN)) {
- if (e->flag & PEDGE_SELECT)
- v->flag |= PVERT_SELECT;
- v->flag |= PVERT_PIN;
- v->uv[0] += e->orig_uv[0];
- v->uv[1] += e->orig_uv[1];
- nedges++;
+ for (v=chart->verts; v; v=v->nextlink)
+ param_test_equals_ptr("v->edge->vert", v, v->edge->vert);
+
+ for (e=chart->edges; e; e=e->nextlink) {
+ if (e->pair) {
+ param_test_equals_ptr("e->pair->pair", e, e->pair->pair);
+ param_test_equals_ptr("pair->vert", e->vert, e->pair->next->vert);
+ param_test_equals_ptr("pair->next->vert", e->next->vert, e->pair->vert);
}
-
- e = p_wheel_edge_next(e);
- } while (e && e != (v->edge));
-
- if (nedges > 0) {
- v->uv[0] /= nedges;
- v->uv[1] /= nedges;
}
}
+#endif
-static void p_vert_load_select_uvs(PVert *v)
+/* Loading / Flushing */
+
+static void p_vert_load_pin_select_uvs(PVert *v)
{
PEdge *e;
- int nedges = 0;
+ int nedges = 0, npins = 0;
+ float pinuv[2];
v->uv[0] = v->uv[1] = 0.0f;
- nedges = 0;
+ pinuv[0] = pinuv[1] = 0.0f;
e = v->edge;
do {
- if (e->orig_uv && (e->flag & PEDGE_SELECT))
- v->flag |= PVERT_SELECT;
+ if (e->orig_uv) {
+ if (e->flag & PEDGE_SELECT)
+ v->flag |= PVERT_SELECT;
+
+ if (e->flag & PEDGE_PIN) {
+ pinuv[0] += e->orig_uv[0];
+ pinuv[1] += e->orig_uv[1];
+ npins++;
+ }
+ else {
+ v->uv[0] += e->orig_uv[0];
+ v->uv[1] += e->orig_uv[1];
+ }
- v->uv[0] += e->orig_uv[0];
- v->uv[1] += e->orig_uv[1];
- nedges++;
+ nedges++;
+ }
e = p_wheel_edge_next(e);
} while (e && e != (v->edge));
- if (nedges > 0) {
+ if (npins > 0) {
+ v->uv[0] = pinuv[0]/npins;
+ v->uv[1] = pinuv[1]/npins;
+ v->flag |= PVERT_PIN;
+ }
+ else if (nedges > 0) {
v->uv[0] /= nedges;
v->uv[1] /= nedges;
}
}
-static void p_extrema_verts(PChart *chart, PVert **v1, PVert **v2)
+static void p_flush_uvs(PChart *chart)
{
- float minv[3], maxv[3], dirlen;
- PVert *v, *minvert[3], *maxvert[3];
- int i, dir;
-
- /* find minimum and maximum verts over x/y/z axes */
- minv[0] = minv[1] = minv[2] = 1e20;
- maxv[0] = maxv[1] = maxv[2] = -1e20;
-
- minvert[0] = minvert[1] = minvert[2] = NULL;
- maxvert[0] = maxvert[1] = maxvert[2] = NULL;
+ PEdge *e;
- for (v = (PVert*)chart->verts->first; v; v=v->link.next) {
- for (i = 0; i < 3; i++) {
- if (v->co[i] < minv[i]) {
- minv[i] = v->co[i];
- minvert[i] = v;
- }
- if (v->co[i] > maxv[i]) {
- maxv[i] = v->co[i];
- maxvert[i] = v;
- }
+ for (e=chart->edges; e; e=e->nextlink) {
+ if (e->orig_uv) {
+ e->orig_uv[0] = e->vert->uv[0];
+ e->orig_uv[1] = e->vert->uv[1];
}
}
+}
- /* find axes with longest distance */
- dir = 0;
- dirlen = -1.0;
+static void p_flush_uvs_blend(PChart *chart, float blend)
+{
+ PEdge *e;
+ float invblend = 1.0f - blend;
- for (i = 0; i < 3; i++) {
- if (maxv[i] - minv[i] > dirlen) {
- dir = i;
- dirlen = maxv[i] - minv[i];
+ for (e=chart->edges; e; e=e->nextlink) {
+ if (e->orig_uv) {
+ e->orig_uv[0] = blend*e->old_uv[0] + invblend*e->vert->uv[0];
+ e->orig_uv[1] = blend*e->old_uv[1] + invblend*e->vert->uv[1];
}
}
+}
- if (minvert[dir] == maxvert[dir]) {
- /* degenerate case */
- PFace *f = (PFace*)chart->faces->first;
- *v1 = f->edge->vert;
- *v2 = f->edge->next->vert;
-
- (*v1)->uv[0] = 0.0f;
- (*v1)->uv[1] = 0.5f;
- (*v2)->uv[0] = 1.0f;
- (*v2)->uv[1] = 0.5f;
- }
- else {
- *v1 = minvert[dir];
- *v2 = maxvert[dir];
+static void p_face_backup_uvs(PFace *f)
+{
+ PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
- (*v1)->uv[0] = (*v1)->co[dir];
- (*v1)->uv[1] = (*v1)->co[(dir+1)%3];
- (*v2)->uv[0] = (*v2)->co[dir];
- (*v2)->uv[1] = (*v2)->co[(dir+1)%3];
+ if (e1->orig_uv && e2->orig_uv && e3->orig_uv) {
+ e1->old_uv[0] = e1->orig_uv[0];
+ e1->old_uv[1] = e1->orig_uv[1];
+ e2->old_uv[0] = e2->orig_uv[0];
+ e2->old_uv[1] = e2->orig_uv[1];
+ e3->old_uv[0] = e3->orig_uv[0];
+ e3->old_uv[1] = e3->orig_uv[1];
}
}
-static float p_vec_normalise(float *v)
+static void p_face_restore_uvs(PFace *f)
{
- float d;
-
- d = sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
-
- if(d != 0.0f) {
- d = 1.0f/d;
+ PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
- v[0] *= d;
- v[1] *= d;
- v[2] *= d;
+ if (e1->orig_uv && e2->orig_uv && e3->orig_uv) {
+ e1->orig_uv[0] = e1->old_uv[0];
+ e1->orig_uv[1] = e1->old_uv[1];
+ e2->orig_uv[0] = e2->old_uv[0];
+ e2->orig_uv[1] = e2->old_uv[1];
+ e3->orig_uv[0] = e3->old_uv[0];
+ e3->orig_uv[1] = e3->old_uv[1];
}
-
- return d;
}
-static float p_vec_angle_cos(float *v1, float *v2, float *v3)
-{
- float d1[3], d2[3];
-
- d1[0] = v1[0] - v2[0];
- d1[1] = v1[1] - v2[1];
- d1[2] = v1[2] - v2[2];
+/* Construction (use only during construction, relies on u.key being set */
- d2[0] = v3[0] - v2[0];
- d2[1] = v3[1] - v2[1];
- d2[2] = v3[2] - v2[2];
+static PVert *p_vert_add(PHandle *handle, PHashKey key, float *co, PEdge *e)
+{
+ PVert *v = (PVert*)BLI_memarena_alloc(handle->arena, sizeof *v);
+ v->co = co;
+ v->u.key = key;
+ v->edge = e;
+ v->flag = 0;
- p_vec_normalise(d1);
- p_vec_normalise(d2);
+ phash_insert(handle->hash_verts, (PHashLink*)v);
- return d1[0]*d2[0] + d1[1]*d2[1] + d1[2]*d2[2];
+ return v;
}
-static float p_vec_angle(float *v1, float *v2, float *v3)
+static PVert *p_vert_lookup(PHandle *handle, PHashKey key, float *co, PEdge *e)
{
- float dot = p_vec_angle_cos(v1, v2, v3);
+ PVert *v = (PVert*)phash_lookup(handle->hash_verts, key);
- if (dot <= -1.0f)
- return (float)M_PI;
- else if (dot >= 1.0f)
- return 0.0f;
+ if (v)
+ return v;
else
- return (float)acos(dot);
+ return p_vert_add(handle, key, co, e);
}
-static void p_face_angles(PFace *f, float *a1, float *a2, float *a3)
+static PVert *p_vert_copy(PChart *chart, PVert *v)
{
- PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
- PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert;
+ PVert *nv = (PVert*)BLI_memarena_alloc(chart->handle->arena, sizeof *nv);
- *a1 = p_vec_angle(v3->co, v1->co, v2->co);
- *a2 = p_vec_angle(v1->co, v2->co, v3->co);
- *a3 = M_PI - *a2 - *a1;
+ nv->co = v->co;
+ nv->uv[0] = v->uv[0];
+ nv->uv[1] = v->uv[1];
+ nv->u.key = v->u.key;
+ nv->edge = v->edge;
+ nv->flag = v->flag;
+
+ return nv;
}
-static float p_face_area(PFace *f)
+static PEdge *p_edge_lookup(PHandle *handle, PHashKey *vkeys)
{
- PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
- PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert;
-
- return AreaT3Dfl(v1->co, v2->co, v3->co);
-}
+ PHashKey key = PHASH_edge(vkeys[0], vkeys[1]);
+ PEdge *e = (PEdge*)phash_lookup(handle->hash_edges, key);
-static float p_face_uv_area_signed(PFace *f)
-{
- PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
- PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert;
+ while (e) {
+ if ((e->vert->u.key == vkeys[0]) && (e->next->vert->u.key == vkeys[1]))
+ return e;
+ else if ((e->vert->u.key == vkeys[1]) && (e->next->vert->u.key == vkeys[0]))
+ return e;
- return 0.5f*(((v2->uv[0]-v1->uv[0]) * (v3->uv[1]-v1->uv[1])) -
- ((v3->uv[0]-v1->uv[0]) * (v2->uv[1]-v1->uv[1])));
-}
+ e = (PEdge*)phash_next(handle->hash_edges, key, (PHashLink*)e);
+ }
-static float p_face_uv_area(PFace *f)
-{
- return fabs(p_face_uv_area_signed(f));
+ return NULL;
}
-static void p_chart_area(PChart *chart, float *uv_area, float *area)
+static PBool p_face_exists(PHandle *handle, PHashKey *vkeys, int i1, int i2, int i3)
{
- PFace *f;
+ PHashKey key = PHASH_edge(vkeys[i1], vkeys[i2]);
+ PEdge *e = (PEdge*)phash_lookup(handle->hash_edges, key);
- *uv_area = *area = 0.0f;
+ while (e) {
+ if ((e->vert->u.key == vkeys[i1]) && (e->next->vert->u.key == vkeys[i2])) {
+ if (e->next->next->vert->u.key == vkeys[i3])
+ return P_TRUE;
+ }
+ else if ((e->vert->u.key == vkeys[i2]) && (e->next->vert->u.key == vkeys[i1])) {
+ if (e->next->next->vert->u.key == vkeys[i3])
+ return P_TRUE;
+ }
- for (f=(PFace*)chart->faces->first; f; f=f->link.next) {
- *uv_area += p_face_uv_area(f);
- *area += p_face_area(f);
+ e = (PEdge*)phash_next(handle->hash_edges, key, (PHashLink*)e);
}
+
+ return P_FALSE;
}
static PChart *p_chart_new(PHandle *handle)
{
PChart *chart = (PChart*)MEM_callocN(sizeof*chart, "PChart");
- chart->verts = phash_new(1);
- chart->edges = phash_new(1);
- chart->faces = phash_new(1);
chart->handle = handle;
return chart;
static void p_chart_delete(PChart *chart)
{
/* the actual links are free by memarena */
- phash_delete(chart->verts);
- phash_delete(chart->edges);
- phash_delete(chart->faces);
-
MEM_freeN(chart);
}
float *uv1, *uv2, *uvp1, *uvp2;
float limit[2];
+ limit[0] = 0.00001;
+ limit[1] = 0.00001;
+
uv1 = e->orig_uv;
uv2 = e->next->orig_uv;
- if (e->vert->link.key == ep->vert->link.key) {
+ if (e->vert->u.key == ep->vert->u.key) {
uvp1 = ep->orig_uv;
uvp2 = ep->next->orig_uv;
}
uvp2 = ep->orig_uv;
}
- get_connected_limit_tface_uv(limit);
-
- if((fabs(uv1[0]-uvp1[0]) > limit[0]) && (fabs(uv1[1]-uvp1[1]) > limit[1])) {
+ if((fabs(uv1[0]-uvp1[0]) > limit[0]) || (fabs(uv1[1]-uvp1[1]) > limit[1])) {
e->flag |= PEDGE_SEAM;
ep->flag |= PEDGE_SEAM;
return P_TRUE;
}
- if((fabs(uv2[0]-uvp2[0]) > limit[0]) && (fabs(uv2[1]-uvp2[1]) > limit[1])) {
+ if((fabs(uv2[0]-uvp2[0]) > limit[0]) || (fabs(uv2[1]-uvp2[1]) > limit[1])) {
e->flag |= PEDGE_SEAM;
ep->flag |= PEDGE_SEAM;
return P_TRUE;
return P_FALSE;
}
-static PBool p_edge_has_pair(PChart *chart, PEdge *e, PEdge **pair, PBool impl)
+static PBool p_edge_has_pair(PHandle *handle, PEdge *e, PEdge **pair, PBool impl)
{
PHashKey key;
PEdge *pe;
PVert *v1, *v2;
- PHashKey key1 = e->vert->link.key;
- PHashKey key2 = e->next->vert->link.key;
+ PHashKey key1 = e->vert->u.key;
+ PHashKey key2 = e->next->vert->u.key;
if (e->flag & PEDGE_SEAM)
return P_FALSE;
- key = key1 ^ key2;
- pe = (PEdge*)phash_lookup(chart->edges, key);
+ key = PHASH_edge(key1, key2);
+ pe = (PEdge*)phash_lookup(handle->hash_edges, key);
*pair = NULL;
while (pe) {
v1 = pe->vert;
v2 = pe->next->vert;
- if (((v1->link.key == key1) && (v2->link.key == key2)) ||
- ((v1->link.key == key2) && (v2->link.key == key1))) {
+ if (((v1->u.key == key1) && (v2->u.key == key2)) ||
+ ((v1->u.key == key2) && (v2->u.key == key1))) {
/* don't connect seams and t-junctions */
if ((pe->flag & PEDGE_SEAM) || *pair ||
}
}
- pe = (PEdge*)phash_next(chart->edges, key, (PHashLink*)pe);
+ pe = (PEdge*)phash_next(handle->hash_edges, key, (PHashLink*)pe);
}
if (*pair && (e->vert == (*pair)->vert)) {
return (*pair != NULL);
}
-static PBool p_edge_connect_pair(PChart *chart, PEdge *e, PEdge ***stack, PBool impl)
+static PBool p_edge_connect_pair(PHandle *handle, PEdge *e, PEdge ***stack, PBool impl)
{
PEdge *pair = NULL;
- if(!e->pair && p_edge_has_pair(chart, e, &pair, impl)) {
+ if(!e->pair && p_edge_has_pair(handle, e, &pair, impl)) {
if (e->vert == pair->vert)
p_face_flip(pair->face);
return (e->pair != NULL);
}
-static int p_connect_pairs(PChart *chart, PBool impl)
+static int p_connect_pairs(PHandle *handle, PBool impl)
{
- PEdge **stackbase = MEM_mallocN(sizeof*stackbase * phash_size(chart->faces), "Pstackbase");
+ PEdge **stackbase = MEM_mallocN(sizeof*stackbase*phash_size(handle->hash_faces), "Pstackbase");
PEdge **stack = stackbase;
PFace *f, *first;
PEdge *e, *e1, *e2;
+ PChart *chart = handle->construction_chart;
int ncharts = 0;
/* connect pairs, count edges, set vertex-edge pointer to a pairless edge */
- for (first=(PFace*)chart->faces->first; first; first=first->link.next) {
+ for (first=chart->faces; first; first=first->nextlink) {
if (first->flag & PFACE_CONNECTED)
continue;
/* assign verts to charts so we can sort them later */
f->u.chart = ncharts;
- if (!p_edge_connect_pair(chart, e, &stack, impl))
+ if (!p_edge_connect_pair(handle, e, &stack, impl))
e->vert->edge = e;
- if (!p_edge_connect_pair(chart, e1, &stack, impl))
+ if (!p_edge_connect_pair(handle, e1, &stack, impl))
e1->vert->edge = e1;
- if (!p_edge_connect_pair(chart, e2, &stack, impl))
+ if (!p_edge_connect_pair(handle, e2, &stack, impl))
e2->vert->edge = e2;
}
if (we == v->edge) {
/* found it, no need to copy */
copy = P_FALSE;
- phash_insert(chart->verts, (PHashLink*)v);
+ v->nextlink = chart->verts;
+ chart->verts = v;
+ chart->nverts++;
}
}
if (copy) {
/* not found, copying */
+ v->flag |= PVERT_SPLIT;
v = p_vert_copy(chart, v);
+ v->flag |= PVERT_SPLIT;
+
+ v->nextlink = chart->verts;
+ chart->verts = v;
+ chart->nverts++;
+
v->edge = lastwe;
we = lastwe;
for (i = 0; i < ncharts; i++)
charts[i] = p_chart_new(handle);
- f = (PFace*)chart->faces->first;
+ f = chart->faces;
while (f) {
PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
- nextf = f->link.next;
+ nextf = f->nextlink;
nchart = charts[f->u.chart];
- phash_insert(nchart->faces, (PHashLink*)f);
- phash_insert(nchart->edges, (PHashLink*)e1);
- phash_insert(nchart->edges, (PHashLink*)e2);
- phash_insert(nchart->edges, (PHashLink*)e3);
+ f->nextlink = nchart->faces;
+ nchart->faces = f;
+ e1->nextlink = nchart->edges;
+ nchart->edges = e1;
+ e2->nextlink = nchart->edges;
+ nchart->edges = e2;
+ e3->nextlink = nchart->edges;
+ nchart->edges = e3;
+
+ nchart->nfaces++;
+ nchart->nedges += 3;
p_split_vert(nchart, e1);
p_split_vert(nchart, e2);
return charts;
}
-static void p_face_backup_uvs(PFace *f)
-{
- PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
-
- e1->old_uv[0] = e1->orig_uv[0];
- e1->old_uv[1] = e1->orig_uv[1];
- e2->old_uv[0] = e2->orig_uv[0];
- e2->old_uv[1] = e2->orig_uv[1];
- e3->old_uv[0] = e3->orig_uv[0];
- e3->old_uv[1] = e3->orig_uv[1];
-}
-
-static void p_face_restore_uvs(PFace *f)
-{
- PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
-
- e1->orig_uv[0] = e1->old_uv[0];
- e1->orig_uv[1] = e1->old_uv[1];
- e2->orig_uv[0] = e2->old_uv[0];
- e2->orig_uv[1] = e2->old_uv[1];
- e3->orig_uv[0] = e3->old_uv[0];
- e3->orig_uv[1] = e3->old_uv[1];
-}
-
-static PFace *p_face_add(PChart *chart, ParamKey key, ParamKey *vkeys,
- float *co[3], float *uv[3], int i1, int i2, int i3,
- ParamBool *pin, ParamBool *select)
+static PFace *p_face_add(PHandle *handle)
{
PFace *f;
PEdge *e1, *e2, *e3;
/* allocate */
- f = (PFace*)BLI_memarena_alloc(chart->handle->arena, sizeof *f);
+ f = (PFace*)BLI_memarena_alloc(handle->arena, sizeof *f);
f->flag=0; // init !
- e1 = (PEdge*)BLI_memarena_alloc(chart->handle->arena, sizeof *e1);
- e2 = (PEdge*)BLI_memarena_alloc(chart->handle->arena, sizeof *e2);
- e3 = (PEdge*)BLI_memarena_alloc(chart->handle->arena, sizeof *e3);
-
-
-
+ e1 = (PEdge*)BLI_memarena_alloc(handle->arena, sizeof *e1);
+ e2 = (PEdge*)BLI_memarena_alloc(handle->arena, sizeof *e2);
+ e3 = (PEdge*)BLI_memarena_alloc(handle->arena, sizeof *e3);
/* set up edges */
f->edge = e1;
e2->flag =0;
e3->flag =0;
+ return f;
+}
- if (co && uv) {
- e1->vert = p_vert_lookup(chart, vkeys[i1], co[i1], e1);
- e2->vert = p_vert_lookup(chart, vkeys[i2], co[i2], e2);
- e3->vert = p_vert_lookup(chart, vkeys[i3], co[i3], e3);
+static PFace *p_face_add_construct(PHandle *handle, ParamKey key, ParamKey *vkeys,
+ float *co[3], float *uv[3], int i1, int i2, int i3,
+ ParamBool *pin, ParamBool *select)
+{
+ PFace *f = p_face_add(handle);
+ PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
- e1->orig_uv = uv[i1];
- e2->orig_uv = uv[i2];
- e3->orig_uv = uv[i3];
+ e1->vert = p_vert_lookup(handle, vkeys[i1], co[i1], e1);
+ e2->vert = p_vert_lookup(handle, vkeys[i2], co[i2], e2);
+ e3->vert = p_vert_lookup(handle, vkeys[i3], co[i3], e3);
- }
- else {
- /* internal call to add face */
- e1->vert = e2->vert = e3->vert = NULL;
- e1->orig_uv = e2->orig_uv = e3->orig_uv = NULL;
- }
+ e1->orig_uv = uv[i1];
+ e2->orig_uv = uv[i2];
+ e3->orig_uv = uv[i3];
if (pin) {
if (pin[i1]) e1->flag |= PEDGE_PIN;
}
/* insert into hash */
- f->link.key = key;
- phash_insert(chart->faces, (PHashLink*)f);
+ f->u.key = key;
+ phash_insert(handle->hash_faces, (PHashLink*)f);
- e1->link.key = vkeys[i1]^vkeys[i2];
- e2->link.key = vkeys[i2]^vkeys[i3];
- e3->link.key = vkeys[i3]^vkeys[i1];
+ e1->u.key = PHASH_edge(vkeys[i1], vkeys[i2]);
+ e2->u.key = PHASH_edge(vkeys[i2], vkeys[i3]);
+ e3->u.key = PHASH_edge(vkeys[i3], vkeys[i1]);
- phash_insert(chart->edges, (PHashLink*)e1);
- phash_insert(chart->edges, (PHashLink*)e2);
- phash_insert(chart->edges, (PHashLink*)e3);
+ phash_insert(handle->hash_edges, (PHashLink*)e1);
+ phash_insert(handle->hash_edges, (PHashLink*)e2);
+ phash_insert(handle->hash_edges, (PHashLink*)e3);
return f;
}
-static PBool p_quad_split_direction(float **co)
-{
- float a1, a2;
-
- a1 = p_vec_angle_cos(co[0], co[1], co[2]);
- a1 += p_vec_angle_cos(co[1], co[0], co[2]);
- a1 += p_vec_angle_cos(co[2], co[0], co[1]);
-
- a2 = p_vec_angle_cos(co[0], co[1], co[3]);
- a2 += p_vec_angle_cos(co[1], co[0], co[3]);
- a2 += p_vec_angle_cos(co[3], co[0], co[1]);
-
- return (a1 > a2);
-}
-
-static float p_edge_length(PEdge *e)
+static PFace *p_face_add_fill(PChart *chart, PVert *v1, PVert *v2, PVert *v3)
{
- PVert *v1 = e->vert, *v2 = e->next->vert;
- float d[3];
+ PFace *f = p_face_add(chart->handle);
+ PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
- d[0] = v2->co[0] - v1->co[0];
- d[1] = v2->co[1] - v1->co[1];
- d[2] = v2->co[2] - v1->co[2];
+ e1->vert = v1;
+ e2->vert = v2;
+ e3->vert = v3;
- return sqrt(d[0]*d[0] + d[1]*d[1] + d[2]*d[2]);
-}
+ e1->orig_uv = e2->orig_uv = e3->orig_uv = NULL;
-static float p_edge_uv_length(PEdge *e)
-{
- PVert *v1 = e->vert, *v2 = e->next->vert;
- float d[3];
+ f->nextlink = chart->faces;
+ chart->faces = f;
+ e1->nextlink = chart->edges;
+ chart->edges = e1;
+ e2->nextlink = chart->edges;
+ chart->edges = e2;
+ e3->nextlink = chart->edges;
+ chart->edges = e3;
- d[0] = v2->uv[0] - v1->uv[0];
- d[1] = v2->uv[1] - v1->uv[1];
+ chart->nfaces++;
+ chart->nedges += 3;
- return sqrt(d[0]*d[0] + d[1]*d[1]);
+ return f;
}
-void p_chart_uv_bbox(PChart *chart, float *minv, float *maxv)
+static PBool p_quad_split_direction(PHandle *handle, float **co, PHashKey *vkeys)
{
- PVert *v;
-
- INIT_MINMAX2(minv, maxv);
-
- for (v=(PVert*)chart->verts->first; v; v=v->link.next) {
- DO_MINMAX2(v->uv, minv, maxv);
+ float fac= VecLenf(co[0], co[2]) - VecLenf(co[1], co[3]);
+ PBool dir = (fac <= 0.0f);
+
+ /* the face exists check is there because of a special case: when
+ two quads share three vertices, they can each be split into two
+ triangles, resulting in two identical triangles. for example in
+ suzanne's nose. */
+ if (dir) {
+ if (p_face_exists(handle,vkeys,0,1,2) || p_face_exists(handle,vkeys,0,2,3))
+ return !dir;
}
-}
-
-static void p_chart_uv_scale(PChart *chart, float scale)
-{
- PVert *v;
-
- for (v=(PVert*)chart->verts->first; v; v=v->link.next) {
- v->uv[0] *= scale;
- v->uv[1] *= scale;
+ else {
+ if (p_face_exists(handle,vkeys,0,1,3) || p_face_exists(handle,vkeys,1,2,3))
+ return !dir;
}
-}
-
-static void p_chart_uv_translate(PChart *chart, float trans[2])
-{
- PVert *v;
- for (v=(PVert*)chart->verts->first; v; v=v->link.next) {
- v->uv[0] += trans[0];
- v->uv[1] += trans[1];
- }
+ return dir;
}
+/* Construction: boundary filling */
+
static void p_chart_boundaries(PChart *chart, int *nboundaries, PEdge **outer)
{
PEdge *e, *be;
float len, maxlen = -1.0;
- *nboundaries = 0;
- *outer = NULL;
+ if (nboundaries)
+ *nboundaries = 0;
+ if (outer)
+ *outer = NULL;
- for (e=(PEdge*)chart->edges->first; e; e=e->link.next) {
+ for (e=chart->edges; e; e=e->nextlink) {
if (e->pair || (e->flag & PEDGE_DONE))
continue;
- (*nboundaries)++;
+ if (nboundaries)
+ (*nboundaries)++;
+
len = 0.0f;
be = e;
be = be->next->vert->edge;
} while(be != e);
- if (len > maxlen) {
+ if (outer && (len > maxlen)) {
*outer = e;
maxlen = len;
}
}
- for (e=(PEdge*)chart->edges->first; e; e=e->link.next)
+ for (e=chart->edges; e; e=e->nextlink)
e->flag &= ~PEDGE_DONE;
}
return angle;
}
-static PEdge *p_boundary_edge_next(PEdge *e)
-{
- return e->next->vert->edge;
-}
-
-static PEdge *p_boundary_edge_prev(PEdge *e)
-{
- PEdge *we = e, *last;
-
- do {
- last = we;
- we = p_wheel_edge_next(we);
- } while (we && (we != e));
-
- return last->next->next;
-}
-
static void p_chart_fill_boundary(PChart *chart, PEdge *be, int nedges)
{
PEdge *e, *e1, *e2;
PHashKey vkeys[3];
PFace *f;
- struct PHeap *heap = pheap_new(nedges);
+ struct Heap *heap = BLI_heap_new();
float angle;
e = be;
do {
angle = p_edge_boundary_angle(e);
- e->u.heaplink = pheap_insert(heap, angle, e);
+ e->u.heaplink = BLI_heap_insert(heap, angle, e);
- e = e->next->vert->edge;
+ e = p_boundary_edge_next(e);
} while(e != be);
if (nedges == 2) {
e->pair = be;
be->pair = e;
- pheap_remove(heap, e->u.heaplink);
- pheap_remove(heap, be->u.heaplink);
+ BLI_heap_remove(heap, e->u.heaplink);
+ BLI_heap_remove(heap, be->u.heaplink);
}
else {
while (nedges > 2) {
PEdge *ne, *ne1, *ne2;
- e = pheap_popmin(heap);
+ e = (PEdge*)BLI_heap_popmin(heap);
e1 = p_boundary_edge_prev(e);
e2 = p_boundary_edge_next(e);
- pheap_remove(heap, e1->u.heaplink);
- pheap_remove(heap, e2->u.heaplink);
+ BLI_heap_remove(heap, e1->u.heaplink);
+ BLI_heap_remove(heap, e2->u.heaplink);
e->u.heaplink = e1->u.heaplink = e2->u.heaplink = NULL;
e->flag |= PEDGE_FILLED;
e1->flag |= PEDGE_FILLED;
- vkeys[0] = e->vert->link.key;
- vkeys[1] = e1->vert->link.key;
- vkeys[2] = e2->vert->link.key;
+ vkeys[0] = e->vert->u.key;
+ vkeys[1] = e1->vert->u.key;
+ vkeys[2] = e2->vert->u.key;
- f = p_face_add(chart, -1, vkeys, NULL, NULL, 0, 1, 2, NULL, NULL);
+ f = p_face_add_fill(chart, e->vert, e1->vert, e2->vert);
f->flag |= PFACE_FILLED;
ne = f->edge->next->next;
else {
ne2->vert->edge = ne2;
- ne2->u.heaplink = pheap_insert(heap, p_edge_boundary_angle(ne2), ne2);
- e2->u.heaplink = pheap_insert(heap, p_edge_boundary_angle(e2), e2);
+ ne2->u.heaplink = BLI_heap_insert(heap, p_edge_boundary_angle(ne2), ne2);
+ e2->u.heaplink = BLI_heap_insert(heap, p_edge_boundary_angle(e2), e2);
}
nedges--;
}
}
- pheap_delete(heap);
+ BLI_heap_free(heap, NULL);
}
static void p_chart_fill_boundaries(PChart *chart, PEdge *outer)
PEdge *e, *enext, *be;
int nedges;
- for (e=(PEdge*)chart->edges->first; e; e=e->link.next) {
- enext = e->link.next;
+ for (e=chart->edges; e; e=e->nextlink) {
+ enext = e->nextlink;
if (e->pair || (e->flag & PEDGE_FILLED))
continue;
}
}
-static void p_flush_uvs(PChart *chart)
-{
- PEdge *e;
+#if 0
+/* Polygon kernel for inserting uv's non overlapping */
- for (e=(PEdge*)chart->edges->first; e; e=e->link.next) {
- if (e->orig_uv) {
- e->orig_uv[0] = e->vert->uv[0];
- e->orig_uv[1] = e->vert->uv[1];
- }
- }
+static int p_polygon_point_in(float *cp1, float *cp2, float *p)
+{
+ if ((cp1[0] == p[0]) && (cp1[1] == p[1]))
+ return 2;
+ else if ((cp2[0] == p[0]) && (cp2[1] == p[1]))
+ return 3;
+ else
+ return (p_area_signed(cp1, cp2, p) >= 0.0f);
}
-static void p_flush_uvs_blend(PChart *chart, float blend)
+static void p_polygon_kernel_clip(float (*oldpoints)[2], int noldpoints, float (*newpoints)[2], int *nnewpoints, float *cp1, float *cp2)
{
- PEdge *e;
- float invblend = 1.0f - blend;
+ float *p2, *p1, isect[2];
+ int i, p2in, p1in;
- for (e=(PEdge*)chart->edges->first; e; e=e->link.next) {
- if (e->orig_uv) {
- e->orig_uv[0] = blend*e->old_uv[0] + invblend*e->vert->uv[0];
- e->orig_uv[1] = blend*e->old_uv[1] + invblend*e->vert->uv[1];
+ p1 = oldpoints[noldpoints-1];
+ p1in = p_polygon_point_in(cp1, cp2, p1);
+ *nnewpoints = 0;
+
+ for (i = 0; i < noldpoints; i++) {
+ p2 = oldpoints[i];
+ p2in = p_polygon_point_in(cp1, cp2, p2);
+
+ if ((p2in >= 2) || (p1in && p2in)) {
+ newpoints[*nnewpoints][0] = p2[0];
+ newpoints[*nnewpoints][1] = p2[1];
+ (*nnewpoints)++;
+ }
+ else if (p1in && !p2in) {
+ if (p1in != 3) {
+ p_intersect_line_2d(p1, p2, cp1, cp2, isect);
+ newpoints[*nnewpoints][0] = isect[0];
+ newpoints[*nnewpoints][1] = isect[1];
+ (*nnewpoints)++;
+ }
}
+ else if (!p1in && p2in) {
+ p_intersect_line_2d(p1, p2, cp1, cp2, isect);
+ newpoints[*nnewpoints][0] = isect[0];
+ newpoints[*nnewpoints][1] = isect[1];
+ (*nnewpoints)++;
+
+ newpoints[*nnewpoints][0] = p2[0];
+ newpoints[*nnewpoints][1] = p2[1];
+ (*nnewpoints)++;
+ }
+
+ p1in = p2in;
+ p1 = p2;
}
}
-/* Exported */
-
-ParamHandle *param_construct_begin()
+static void p_polygon_kernel_center(float (*points)[2], int npoints, float *center)
{
- PHandle *handle = MEM_callocN(sizeof*handle, "PHandle");
- handle->construction_chart = p_chart_new(handle);
- handle->state = PHANDLE_STATE_ALLOCATED;
- handle->arena = BLI_memarena_new((1<<16));
+ int i, size, nnewpoints = npoints;
+ float (*oldpoints)[2], (*newpoints)[2], *p1, *p2;
- return (ParamHandle*)handle;
-}
-
-void param_delete(ParamHandle *handle)
-{
- PHandle *phandle = (PHandle*)handle;
- int i;
+ size = npoints*3;
+ oldpoints = MEM_mallocN(sizeof(float)*2*size, "PPolygonOldPoints");
+ newpoints = MEM_mallocN(sizeof(float)*2*size, "PPolygonNewPoints");
- param_assert((phandle->state == PHANDLE_STATE_ALLOCATED) ||
- (phandle->state == PHANDLE_STATE_CONSTRUCTED));
-
- for (i = 0; i < phandle->ncharts; i++)
- p_chart_delete(phandle->charts[i]);
-
- if (phandle->charts)
- MEM_freeN(phandle->charts);
+ memcpy(oldpoints, points, sizeof(float)*2*npoints);
- if (phandle->construction_chart)
- p_chart_delete(phandle->construction_chart);
+ for (i = 0; i < npoints; i++) {
+ p1 = points[i];
+ p2 = points[(i+1)%npoints];
+ p_polygon_kernel_clip(oldpoints, nnewpoints, newpoints, &nnewpoints, p1, p2);
- BLI_memarena_free(phandle->arena);
- MEM_freeN(phandle);
-}
+ if (nnewpoints == 0) {
+ /* degenerate case, use center of original polygon */
+ memcpy(oldpoints, points, sizeof(float)*2*npoints);
+ nnewpoints = npoints;
+ break;
+ }
+ else if (nnewpoints == 1) {
+ /* degenerate case, use remaining point */
+ center[0] = newpoints[0][0];
+ center[1] = newpoints[0][1];
-void param_face_add(ParamHandle *handle, ParamKey key, int nverts,
- ParamKey *vkeys, float **co, float **uv,
- ParamBool *pin, ParamBool *select)
-{
- PHandle *phandle = (PHandle*)handle;
- PChart *chart = phandle->construction_chart;
+ MEM_freeN(oldpoints);
+ MEM_freeN(newpoints);
- param_assert(phash_lookup(chart->faces, key) == NULL);
- param_assert(phandle->state == PHANDLE_STATE_ALLOCATED);
- param_assert((nverts == 3) || (nverts == 4));
+ return;
+ }
- if (nverts == 4) {
- if (!p_quad_split_direction(co)) {
- p_face_add(chart, key, vkeys, co, uv, 0, 1, 2, pin, select);
- p_face_add(chart, key, vkeys, co, uv, 0, 2, 3, pin, select);
+ if (nnewpoints*2 > size) {
+ size *= 2;
+ free(oldpoints);
+ oldpoints = malloc(sizeof(float)*2*size);
+ memcpy(oldpoints, newpoints, sizeof(float)*2*nnewpoints);
+ free(newpoints);
+ newpoints = malloc(sizeof(float)*2*size);
}
else {
- p_face_add(chart, key, vkeys, co, uv, 0, 1, 3, pin, select);
- p_face_add(chart, key, vkeys, co, uv, 1, 2, 3, pin, select);
+ float (*sw_points)[2] = oldpoints;
+ oldpoints = newpoints;
+ newpoints = sw_points;
}
}
- else
- p_face_add(chart, key, vkeys, co, uv, 0, 1, 2, pin, select);
-}
-void param_edge_set_seam(ParamHandle *handle, ParamKey *vkeys)
-{
- PHandle *phandle = (PHandle*)handle;
- PChart *chart = phandle->construction_chart;
- PEdge *e;
+ center[0] = center[1] = 0.0f;
- param_assert(phandle->state == PHANDLE_STATE_ALLOCATED);
+ for (i = 0; i < nnewpoints; i++) {
+ center[0] += oldpoints[i][0];
+ center[1] += oldpoints[i][1];
+ }
- e = p_edge_lookup(chart, vkeys);
- if (e)
- e->flag |= PEDGE_SEAM;
+ center[0] /= nnewpoints;
+ center[1] /= nnewpoints;
+
+ MEM_freeN(oldpoints);
+ MEM_freeN(newpoints);
}
+#endif
-void param_construct_end(ParamHandle *handle, ParamBool fill, ParamBool impl)
-{
- PHandle *phandle = (PHandle*)handle;
- PChart *chart = phandle->construction_chart;
- int i, j, nboundaries = 0;
- PEdge *outer;
+#if 0
+/* Edge Collapser */
- param_assert(phandle->state == PHANDLE_STATE_ALLOCATED);
+int NCOLLAPSE = 1;
+int NCOLLAPSEX = 0;
+
+static float p_vert_cotan(float *v1, float *v2, float *v3)
+{
+ float a[3], b[3], c[3], clen;
- phandle->ncharts = p_connect_pairs(chart, impl);
- phandle->charts = p_split_charts(phandle, chart, phandle->ncharts);
+ VecSubf(a, v2, v1);
+ VecSubf(b, v3, v1);
+ Crossf(c, a, b);
- p_chart_delete(chart);
- phandle->construction_chart = NULL;
+ clen = VecLength(c);
- for (i = j = 0; i < phandle->ncharts; i++) {
- p_chart_boundaries(phandle->charts[i], &nboundaries, &outer);
+ if (clen == 0.0f)
+ return 0.0f;
+
+ return Inpf(a, b)/clen;
+}
+
+static PBool p_vert_flipped_wheel_triangle(PVert *v)
+{
+ PEdge *e = v->edge;
- if (nboundaries == 0) {
- p_chart_delete(phandle->charts[i]);
- continue;
- }
+ do {
+ if (p_face_uv_area_signed(e->face) < 0.0f)
+ return P_TRUE;
- phandle->charts[j] = phandle->charts[i];
- j++;
+ e = p_wheel_edge_next(e);
+ } while (e && (e != v->edge));
-#if 0
- if (fill && (nboundaries > 1))
- p_chart_fill_boundaries(phandle->charts[i], outer);
-#endif
- }
+ return P_FALSE;
+}
- phandle->ncharts = j;
+static PBool p_vert_map_harmonic_weights(PVert *v)
+{
+ float weightsum, positionsum[2], olduv[2];
- phandle->state = PHANDLE_STATE_CONSTRUCTED;
-}
+ weightsum = 0.0f;
+ positionsum[0] = positionsum[1] = 0.0f;
-/* Least Squares Conformal Maps */
+ if (p_vert_interior(v)) {
+ PEdge *e = v->edge;
-static void p_chart_lscm_load_solution(PChart *chart)
-{
- PVert *v;
+ do {
+ float t1, t2, weight;
+ PVert *v1, *v2;
+
+ v1 = e->next->vert;
+ v2 = e->next->next->vert;
+ t1 = p_vert_cotan(v2->co, e->vert->co, v1->co);
+
+ v1 = e->pair->next->vert;
+ v2 = e->pair->next->next->vert;
+ t2 = p_vert_cotan(v2->co, e->pair->vert->co, v1->co);
+
+ weight = 0.5f*(t1 + t2);
+ weightsum += weight;
+ positionsum[0] += weight*e->pair->vert->uv[0];
+ positionsum[1] += weight*e->pair->vert->uv[1];
- for (v=(PVert*)chart->verts->first; v; v=v->link.next) {
- v->uv[0] = nlGetVariable(2*v->u.index);
- v->uv[1] = nlGetVariable(2*v->u.index + 1);
+ e = p_wheel_edge_next(e);
+ } while (e && (e != v->edge));
}
-}
-
-static void p_chart_lscm_begin(PChart *chart, PBool live)
-{
- PVert *v, *pin1, *pin2;
- PBool select = P_FALSE;
- int npins = 0, id = 0;
+ else {
+ PEdge *e = v->edge;
- /* give vertices matrix indices and count pins */
- for (v=(PVert*)chart->verts->first; v; v=v->link.next) {
- p_vert_load_pin_select_uvs(v);
+ do {
+ float t1, t2;
+ PVert *v1, *v2;
- if (v->flag & PVERT_PIN)
- npins++;
+ v2 = e->next->vert;
+ v1 = e->next->next->vert;
- if (v->flag & PVERT_SELECT)
- select = P_TRUE;
+ t1 = p_vert_cotan(v1->co, v->co, v2->co);
+ t2 = p_vert_cotan(v2->co, v->co, v1->co);
- v->u.index = id++;
+ weightsum += t1 + t2;
+ positionsum[0] += (v2->uv[1] - v1->uv[1]) + (t1*v2->uv[0] + t2*v1->uv[0]);
+ positionsum[1] += (v1->uv[0] - v2->uv[0]) + (t1*v2->uv[1] + t2*v1->uv[1]);
+
+ e = p_wheel_edge_next(e);
+ } while (e && (e != v->edge));
}
- if ((live && !select) || (npins == 1)) {
- chart->u.lscm.context = NULL;
+ if (weightsum != 0.0f) {
+ weightsum = 1.0f/weightsum;
+ positionsum[0] *= weightsum;
+ positionsum[1] *= weightsum;
}
- else {
- if (npins <= 1) {
- /* not enough pins, lets find some ourself */
- p_extrema_verts(chart, &pin1, &pin2);
- chart->u.lscm.pin1 = pin1;
- chart->u.lscm.pin2 = pin2;
- }
- else {
- chart->flag |= PCHART_NOPACK;
- }
+ olduv[0] = v->uv[0];
+ olduv[1] = v->uv[1];
+ v->uv[0] = positionsum[0];
+ v->uv[1] = positionsum[1];
- nlNewContext();
- nlSolverParameteri(NL_NB_VARIABLES, 2*phash_size(chart->verts));
- nlSolverParameteri(NL_LEAST_SQUARES, NL_TRUE);
+ if (p_vert_flipped_wheel_triangle(v)) {
+ v->uv[0] = olduv[0];
+ v->uv[1] = olduv[1];
- chart->u.lscm.context = nlGetCurrent();
+ return P_FALSE;
}
+
+ return P_TRUE;
}
-static PBool p_chart_lscm_solve(PChart *chart)
+static void p_vert_harmonic_insert(PVert *v)
{
- PVert *v, *pin1 = chart->u.lscm.pin1, *pin2 = chart->u.lscm.pin2;
- PFace *f;
+ PEdge *e;
- nlMakeCurrent(chart->u.lscm.context);
+ if (!p_vert_map_harmonic_weights(v)) {
+ /* do polygon kernel center insertion: this is quite slow, but should
+ only be needed for 0.01 % of verts or so, when insert with harmonic
+ weights fails */
- nlBegin(NL_SYSTEM);
+ int npoints = 0, i;
+ float (*points)[2];
- for (v=(PVert*)chart->verts->first; v; v=v->link.next)
- if (v->flag & PVERT_PIN)
- p_vert_load_pin_select_uvs(v);
+ e = v->edge;
+ do {
+ npoints++;
+ e = p_wheel_edge_next(e);
+ } while (e && (e != v->edge));
- if (chart->u.lscm.pin1) {
- nlLockVariable(2*pin1->u.index);
- nlLockVariable(2*pin1->u.index + 1);
- nlLockVariable(2*pin2->u.index);
- nlLockVariable(2*pin2->u.index + 1);
-
- nlSetVariable(2*pin1->u.index, pin1->uv[0]);
- nlSetVariable(2*pin1->u.index + 1, pin1->uv[1]);
- nlSetVariable(2*pin2->u.index, pin2->uv[0]);
- nlSetVariable(2*pin2->u.index + 1, pin2->uv[1]);
+ if (e == NULL)
+ npoints++;
+
+ points = MEM_mallocN(sizeof(float)*2*npoints, "PHarmonicPoints");
+
+ e = v->edge;
+ i = 0;
+ do {
+ PEdge *nexte = p_wheel_edge_next(e);
+
+ points[i][0] = e->next->vert->uv[0];
+ points[i][1] = e->next->vert->uv[1];
+
+ if (nexte == NULL) {
+ i++;
+ points[i][0] = e->next->next->vert->uv[0];
+ points[i][1] = e->next->next->vert->uv[1];
+ break;
+ }
+
+ e = nexte;
+ i++;
+ } while (e != v->edge);
+
+ p_polygon_kernel_center(points, npoints, v->uv);
+
+ MEM_freeN(points);
+ }
+
+ e = v->edge;
+ do {
+ if (!(e->next->vert->flag & PVERT_PIN))
+ p_vert_map_harmonic_weights(e->next->vert);
+ e = p_wheel_edge_next(e);
+ } while (e && (e != v->edge));
+
+ p_vert_map_harmonic_weights(v);
+}
+
+static void p_vert_fix_edge_pointer(PVert *v)
+{
+ PEdge *start = v->edge;
+
+ /* set v->edge pointer to the edge with no pair, if there is one */
+ while (v->edge->pair) {
+ v->edge = p_wheel_edge_prev(v->edge);
+
+ if (v->edge == start)
+ break;
+ }
+}
+
+static void p_collapsing_verts(PEdge *edge, PEdge *pair, PVert **newv, PVert **keepv)
+{
+ /* the two vertices that are involved in the collapse */
+ if (edge) {
+ *newv = edge->vert;
+ *keepv = edge->next->vert;
}
else {
- /* set and lock the pins */
- for (v=(PVert*)chart->verts->first; v; v=v->link.next) {
- if (v->flag & PVERT_PIN) {
- nlLockVariable(2*v->u.index);
- nlLockVariable(2*v->u.index + 1);
+ *newv = pair->next->vert;
+ *keepv = pair->vert;
+ }
+}
- nlSetVariable(2*v->u.index, v->uv[0]);
- nlSetVariable(2*v->u.index + 1, v->uv[1]);
- }
- }
+static void p_collapse_edge(PEdge *edge, PEdge *pair)
+{
+ PVert *oldv, *keepv;
+ PEdge *e;
+
+ p_collapsing_verts(edge, pair, &oldv, &keepv);
+
+ /* change e->vert pointers from old vertex to the target vertex */
+ e = oldv->edge;
+ do {
+ if ((e != edge) && !(pair && pair->next == e))
+ e->vert = keepv;
+
+ e = p_wheel_edge_next(e);
+ } while (e && (e != oldv->edge));
+
+ /* set keepv->edge pointer */
+ if ((edge && (keepv->edge == edge->next)) || (keepv->edge == pair)) {
+ if (edge && edge->next->pair)
+ keepv->edge = edge->next->pair->next;
+ else if (pair && pair->next->next->pair)
+ keepv->edge = pair->next->next->pair;
+ else if (edge && edge->next->next->pair)
+ keepv->edge = edge->next->next->pair;
+ else
+ keepv->edge = pair->next->pair->next;
}
+
+ /* update pairs and v->edge pointers */
+ if (edge) {
+ PEdge *e1 = edge->next, *e2 = e1->next;
- /* construct matrix */
+ if (e1->pair)
+ e1->pair->pair = e2->pair;
- nlBegin(NL_MATRIX);
+ if (e2->pair) {
+ e2->pair->pair = e1->pair;
+ e2->vert->edge = p_wheel_edge_prev(e2);
+ }
+ else
+ e2->vert->edge = p_wheel_edge_next(e2);
- for (f=(PFace*)chart->faces->first; f; f=f->link.next) {
- PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
- PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert;
- float a1, a2, a3, ratio, cosine, sine;
- float sina1, sina2, sina3, sinmax;
+ p_vert_fix_edge_pointer(e2->vert);
+ }
- if (chart->u.lscm.abf_alpha) {
- /* use abf angles if passed on */
- a1 = *(chart->u.lscm.abf_alpha++);
- a2 = *(chart->u.lscm.abf_alpha++);
- a3 = *(chart->u.lscm.abf_alpha++);
+ if (pair) {
+ PEdge *e1 = pair->next, *e2 = e1->next;
+
+ if (e1->pair)
+ e1->pair->pair = e2->pair;
+
+ if (e2->pair) {
+ e2->pair->pair = e1->pair;
+ e2->vert->edge = p_wheel_edge_prev(e2);
}
else
- p_face_angles(f, &a1, &a2, &a3);
+ e2->vert->edge = p_wheel_edge_next(e2);
- sina1 = sin(a1);
- sina2 = sin(a2);
- sina3 = sin(a3);
+ p_vert_fix_edge_pointer(e2->vert);
+ }
- sinmax = MAX3(sina1, sina2, sina3);
+ p_vert_fix_edge_pointer(keepv);
- /* shift vertices to find most stable order */
- #define SHIFT3(type, a, b, c) \
- { type tmp; tmp = a; a = c; c = b; b = tmp; }
+ /* mark for move to collapsed list later */
+ oldv->flag |= PVERT_COLLAPSE;
- if (sina3 != sinmax) {
- SHIFT3(PVert*, v1, v2, v3);
- SHIFT3(float, a1, a2, a3);
- SHIFT3(float, sina1, sina2, sina3);
+ if (edge) {
+ PFace *f = edge->face;
+ PEdge *e1 = edge->next, *e2 = e1->next;
- if (sina2 == sinmax) {
- SHIFT3(PVert*, v1, v2, v3);
- SHIFT3(float, a1, a2, a3);
- SHIFT3(float, sina1, sina2, sina3);
- }
- }
+ f->flag |= PFACE_COLLAPSE;
+ edge->flag |= PEDGE_COLLAPSE;
+ e1->flag |= PEDGE_COLLAPSE;
+ e2->flag |= PEDGE_COLLAPSE;
+ }
- /* angle based lscm formulation */
- ratio = (sina3 == 0.0f)? 0.0f: sina2/sina3;
- cosine = cos(a1)*ratio;
- sine = sina1*ratio;
+ if (pair) {
+ PFace *f = pair->face;
+ PEdge *e1 = pair->next, *e2 = e1->next;
- nlBegin(NL_ROW);
- nlCoefficient(2*v1->u.index, cosine - 1.0);
- nlCoefficient(2*v1->u.index+1, -sine);
- nlCoefficient(2*v2->u.index, -cosine);
- nlCoefficient(2*v2->u.index+1, sine);
- nlCoefficient(2*v3->u.index, 1.0);
- nlEnd(NL_ROW);
+ f->flag |= PFACE_COLLAPSE;
+ pair->flag |= PEDGE_COLLAPSE;
+ e1->flag |= PEDGE_COLLAPSE;
+ e2->flag |= PEDGE_COLLAPSE;
+ }
+}
- nlBegin(NL_ROW);
- nlCoefficient(2*v1->u.index, sine);
- nlCoefficient(2*v1->u.index+1, cosine - 1.0);
- nlCoefficient(2*v2->u.index, -sine);
- nlCoefficient(2*v2->u.index+1, -cosine);
- nlCoefficient(2*v3->u.index+1, 1.0);
- nlEnd(NL_ROW);
+static void p_split_vertex(PEdge *edge, PEdge *pair)
+{
+ PVert *newv, *keepv;
+ PEdge *e;
+
+ p_collapsing_verts(edge, pair, &newv, &keepv);
+
+ /* update edge pairs */
+ if (edge) {
+ PEdge *e1 = edge->next, *e2 = e1->next;
+
+ if (e1->pair)
+ e1->pair->pair = e1;
+ if (e2->pair)
+ e2->pair->pair = e2;
+
+ e2->vert->edge = e2;
+ p_vert_fix_edge_pointer(e2->vert);
+ keepv->edge = e1;
}
- nlEnd(NL_MATRIX);
+ if (pair) {
+ PEdge *e1 = pair->next, *e2 = e1->next;
- nlEnd(NL_SYSTEM);
+ if (e1->pair)
+ e1->pair->pair = e1;
+ if (e2->pair)
+ e2->pair->pair = e2;
- if (nlSolveAdvanced(NULL, NL_TRUE)) {
- p_chart_lscm_load_solution(chart);
- return P_TRUE;
+ e2->vert->edge = e2;
+ p_vert_fix_edge_pointer(e2->vert);
+ keepv->edge = pair;
}
- return P_FALSE;
+ p_vert_fix_edge_pointer(keepv);
+
+ /* set e->vert pointers to restored vertex */
+ e = newv->edge;
+ do {
+ e->vert = newv;
+ e = p_wheel_edge_next(e);
+ } while (e && (e != newv->edge));
}
-static void p_chart_lscm_end(PChart *chart)
+static PBool p_collapse_allowed_topologic(PEdge *edge, PEdge *pair)
{
- if (chart->u.lscm.context)
- nlDeleteContext(chart->u.lscm.context);
+ PVert *oldv, *keepv;
- chart->u.lscm.context = NULL;
- chart->u.lscm.pin1 = NULL;
- chart->u.lscm.pin2 = NULL;
+ p_collapsing_verts(edge, pair, &oldv, &keepv);
+
+ /* boundary edges */
+ if (!edge || !pair) {
+ /* avoid collapsing chart into an edge */
+ if (edge && !edge->next->pair && !edge->next->next->pair)
+ return P_FALSE;
+ else if (pair && !pair->next->pair && !pair->next->next->pair)
+ return P_FALSE;
+ }
+ /* avoid merging two boundaries (oldv and keepv are on the 'other side' of
+ the chart) */
+ else if (!p_vert_interior(oldv) && !p_vert_interior(keepv))
+ return P_FALSE;
+
+ return P_TRUE;
}
-void param_lscm_begin(ParamHandle *handle, ParamBool live)
+static PBool p_collapse_normal_flipped(float *v1, float *v2, float *vold, float *vnew)
{
- PHandle *phandle = (PHandle*)handle;
- int i;
+ float nold[3], nnew[3], sub1[3], sub2[3];
- param_assert(phandle->state == PHANDLE_STATE_CONSTRUCTED);
- phandle->state = PHANDLE_STATE_LSCM;
+ VecSubf(sub1, vold, v1);
+ VecSubf(sub2, vold, v2);
+ Crossf(nold, sub1, sub2);
- for (i = 0; i < phandle->ncharts; i++)
- p_chart_lscm_begin(phandle->charts[i], live);
+ VecSubf(sub1, vnew, v1);
+ VecSubf(sub2, vnew, v2);
+ Crossf(nnew, sub1, sub2);
+
+ return (Inpf(nold, nnew) <= 0.0f);
}
-void param_lscm_solve(ParamHandle *handle)
+static PBool p_collapse_allowed_geometric(PEdge *edge, PEdge *pair)
{
- PHandle *phandle = (PHandle*)handle;
- PChart *chart;
- int i;
- PBool result;
+ PVert *oldv, *keepv;
+ PEdge *e;
+ float angulardefect, angle;
- param_assert(phandle->state == PHANDLE_STATE_LSCM);
+ p_collapsing_verts(edge, pair, &oldv, &keepv);
- for (i = 0; i < phandle->ncharts; i++) {
- chart = phandle->charts[i];
+ angulardefect = 2*M_PI;
- if (chart->u.lscm.context) {
- result = p_chart_lscm_solve(chart);
+ e = oldv->edge;
+ do {
+ float a[3], b[3], minangle, maxangle;
+ PEdge *e1 = e->next, *e2 = e1->next;
+ PVert *v1 = e1->vert, *v2 = e2->vert;
+ int i;
- if (!result || (chart->u.lscm.pin1))
- p_chart_lscm_end(chart);
+ angle = p_vec_angle(v1->co, oldv->co, v2->co);
+ angulardefect -= angle;
+
+ /* skip collapsing faces */
+ if (v1 == keepv || v2 == keepv) {
+ e = p_wheel_edge_next(e);
+ continue;
+ }
+
+ if (p_collapse_normal_flipped(v1->co, v2->co, oldv->co, keepv->co))
+ return P_FALSE;
+
+ a[0] = angle;
+ a[1] = p_vec_angle(v2->co, v1->co, oldv->co);
+ a[2] = M_PI - a[0] - a[1];
+
+ b[0] = p_vec_angle(v1->co, keepv->co, v2->co);
+ b[1] = p_vec_angle(v2->co, v1->co, keepv->co);
+ b[2] = M_PI - b[0] - b[1];
+
+ /* abf criterion 1: avoid sharp and obtuse angles */
+ minangle = 15.0f*M_PI/180.0f;
+ maxangle = M_PI - minangle;
+
+ for (i = 0; i < 3; i++) {
+ if ((b[i] < a[i]) && (b[i] < minangle))
+ return P_FALSE;
+ else if ((b[i] > a[i]) && (b[i] > maxangle))
+ return P_FALSE;
}
+
+ e = p_wheel_edge_next(e);
+ } while (e && (e != oldv->edge));
+
+ if (p_vert_interior(oldv)) {
+ /* hlscm criterion: angular defect smaller than threshold */
+ if (fabs(angulardefect) > (M_PI*30.0/180.0))
+ return P_FALSE;
}
+ else {
+ PVert *v1 = p_boundary_edge_next(oldv->edge)->vert;
+ PVert *v2 = p_boundary_edge_prev(oldv->edge)->vert;
+
+ /* abf++ criterion 2: avoid collapsing verts inwards */
+ if (p_vert_interior(keepv))
+ return P_FALSE;
+
+ /* don't collapse significant boundary changes */
+ angle = p_vec_angle(v1->co, oldv->co, v2->co);
+ if (angle < (M_PI*160.0/180.0))
+ return P_FALSE;
+ }
+
+ return P_TRUE;
}
-void param_lscm_end(ParamHandle *handle)
+static PBool p_collapse_allowed(PEdge *edge, PEdge *pair)
{
- PHandle *phandle = (PHandle*)handle;
- int i;
-
- param_assert(phandle->state == PHANDLE_STATE_LSCM);
+ PVert *oldv, *keepv;
- for (i = 0; i < phandle->ncharts; i++)
- p_chart_lscm_end(phandle->charts[i]);
+ p_collapsing_verts(edge, pair, &oldv, &keepv);
- phandle->state = PHANDLE_STATE_CONSTRUCTED;
+ if (oldv->flag & PVERT_PIN)
+ return P_FALSE;
+
+ return (p_collapse_allowed_topologic(edge, pair) &&
+ p_collapse_allowed_geometric(edge, pair));
}
-/* Stretch */
+static float p_collapse_cost(PEdge *edge, PEdge *pair)
+{
+ /* based on volume and boundary optimization from:
+ "Fast and Memory Efficient Polygonal Simplification" P. Lindstrom, G. Turk */
-#define P_STRETCH_ITER 20
+ PVert *oldv, *keepv;
+ PEdge *e;
+ PFace *oldf1, *oldf2;
+ float volumecost = 0.0f, areacost = 0.0f, edgevec[3], cost, weight, elen;
+ float shapecost = 0.0f;
+ float shapeold = 0.0f, shapenew = 0.0f;
+ int nshapeold = 0, nshapenew = 0;
-static void p_stretch_pin_boundary(PChart *chart)
+ p_collapsing_verts(edge, pair, &oldv, &keepv);
+ oldf1 = (edge)? edge->face: NULL;
+ oldf2 = (pair)? pair->face: NULL;
+
+ VecSubf(edgevec, keepv->co, oldv->co);
+
+ e = oldv->edge;
+ do {
+ float a1, a2, a3;
+ float *co1 = e->next->vert->co;
+ float *co2 = e->next->next->vert->co;
+
+ if ((e->face != oldf1) && (e->face != oldf2)) {
+ float tetrav2[3], tetrav3[3], c[3];
+
+ /* tetrahedron volume = (1/3!)*|a.(b x c)| */
+ VecSubf(tetrav2, co1, oldv->co);
+ VecSubf(tetrav3, co2, oldv->co);
+ Crossf(c, tetrav2, tetrav3);
+
+ volumecost += fabs(Inpf(edgevec, c)/6.0f);
+#if 0
+ shapecost += Inpf(co1, keepv->co);
+
+ if (p_wheel_edge_next(e) == NULL)
+ shapecost += Inpf(co2, keepv->co);
+#endif
+
+ p_triangle_angles(oldv->co, co1, co2, &a1, &a2, &a3);
+ a1 = a1 - M_PI/3.0;
+ a2 = a2 - M_PI/3.0;
+ a3 = a3 - M_PI/3.0;
+ shapeold = (a1*a1 + a2*a2 + a3*a3)/((M_PI/2)*(M_PI/2));
+
+ nshapeold++;
+ }
+ else {
+ p_triangle_angles(keepv->co, co1, co2, &a1, &a2, &a3);
+ a1 = a1 - M_PI/3.0;
+ a2 = a2 - M_PI/3.0;
+ a3 = a3 - M_PI/3.0;
+ shapenew = (a1*a1 + a2*a2 + a3*a3)/((M_PI/2)*(M_PI/2));
+
+ nshapenew++;
+ }
+
+ e = p_wheel_edge_next(e);
+ } while (e && (e != oldv->edge));
+
+ if (!p_vert_interior(oldv)) {
+ PVert *v1 = p_boundary_edge_prev(oldv->edge)->vert;
+ PVert *v2 = p_boundary_edge_next(oldv->edge)->vert;
+
+ areacost = AreaT3Dfl(oldv->co, v1->co, v2->co);
+ }
+
+ elen = VecLength(edgevec);
+ weight = 1.0f; /* 0.2f */
+ cost = weight*volumecost*volumecost + elen*elen*areacost*areacost;
+#if 0
+ cost += shapecost;
+#else
+ shapeold /= nshapeold;
+ shapenew /= nshapenew;
+ shapecost = (shapeold + 0.00001)/(shapenew + 0.00001);
+
+ cost *= shapecost;
+#endif
+
+ return cost;
+}
+
+static void p_collapse_cost_vertex(PVert *vert, float *mincost, PEdge **mine)
{
- PVert *v;
+ PEdge *e, *enext, *pair;
- for(v=(PVert*)chart->verts->first; v; v=v->link.next)
- if (v->edge->pair == NULL)
- v->flag |= PVERT_PIN;
- else
- v->flag &= ~PVERT_PIN;
+ *mine = NULL;
+ *mincost = 0.0f;
+ e = vert->edge;
+ do {
+ if (p_collapse_allowed(e, e->pair)) {
+ float cost = p_collapse_cost(e, e->pair);
+
+ if ((*mine == NULL) || (cost < *mincost)) {
+ *mincost = cost;
+ *mine = e;
+ }
+ }
+
+ enext = p_wheel_edge_next(e);
+
+ if (enext == NULL) {
+ /* the other boundary edge, where we only have the pair halfedge */
+ pair = e->next->next;
+
+ if (p_collapse_allowed(NULL, pair)) {
+ float cost = p_collapse_cost(NULL, pair);
+
+ if ((*mine == NULL) || (cost < *mincost)) {
+ *mincost = cost;
+ *mine = pair;
+ }
+ }
+
+ break;
+ }
+
+ e = enext;
+ } while (e != vert->edge);
}
-static float p_face_stretch(PFace *f)
+static void p_chart_post_collapse_flush(PChart *chart, PEdge *collapsed)
{
- float T, w, tmp[3];
- float Ps[3], Pt[3];
- float a, c, area;
- PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
- PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert;
+ /* move to collapsed_ */
- area = p_face_uv_area_signed(f);
+ PVert *v, *nextv = NULL, *verts = chart->verts;
+ PEdge *e, *nexte = NULL, *edges = chart->edges, *laste = NULL;
+ PFace *f, *nextf = NULL, *faces = chart->faces;
- if (area <= 0.0f) /* flipped face -> infinite stretch */
- return 1e10f;
-
- if (f->flag & PFACE_FILLED)
- return 0.0f;
+ chart->verts = chart->collapsed_verts = NULL;
+ chart->edges = chart->collapsed_edges = NULL;
+ chart->faces = chart->collapsed_faces = NULL;
- w= 1.0f/(2.0f*area);
+ chart->nverts = chart->nedges = chart->nfaces = 0;
+
+ for (v=verts; v; v=nextv) {
+ nextv = v->nextlink;
+
+ if (v->flag & PVERT_COLLAPSE) {
+ v->nextlink = chart->collapsed_verts;
+ chart->collapsed_verts = v;
+ }
+ else {
+ v->nextlink = chart->verts;
+ chart->verts = v;
+ chart->nverts++;
+ }
+ }
+
+ for (e=edges; e; e=nexte) {
+ nexte = e->nextlink;
+
+ if (!collapsed || !(e->flag & PEDGE_COLLAPSE_EDGE)) {
+ if (e->flag & PEDGE_COLLAPSE) {
+ e->nextlink = chart->collapsed_edges;
+ chart->collapsed_edges = e;
+ }
+ else {
+ e->nextlink = chart->edges;
+ chart->edges = e;
+ chart->nedges++;
+ }
+ }
+ }
+
+ /* these are added last so they can be popped of in the right order
+ for splitting */
+ for (e=collapsed; e; e=e->nextlink) {
+ e->nextlink = e->u.nextcollapse;
+ laste = e;
+ }
+ if (laste) {
+ laste->nextlink = chart->collapsed_edges;
+ chart->collapsed_edges = collapsed;
+ }
+
+ for (f=faces; f; f=nextf) {
+ nextf = f->nextlink;
+
+ if (f->flag & PFACE_COLLAPSE) {
+ f->nextlink = chart->collapsed_faces;
+ chart->collapsed_faces = f;
+ }
+ else {
+ f->nextlink = chart->faces;
+ chart->faces = f;
+ chart->nfaces++;
+ }
+ }
+}
+
+static void p_chart_post_split_flush(PChart *chart)
+{
+ /* move from collapsed_ */
+
+ PVert *v, *nextv = NULL;
+ PEdge *e, *nexte = NULL;
+ PFace *f, *nextf = NULL;
+
+ for (v=chart->collapsed_verts; v; v=nextv) {
+ nextv = v->nextlink;
+ v->nextlink = chart->verts;
+ chart->verts = v;
+ chart->nverts++;
+ }
+
+ for (e=chart->collapsed_edges; e; e=nexte) {
+ nexte = e->nextlink;
+ e->nextlink = chart->edges;
+ chart->edges = e;
+ chart->nedges++;
+ }
+
+ for (f=chart->collapsed_faces; f; f=nextf) {
+ nextf = f->nextlink;
+ f->nextlink = chart->faces;
+ chart->faces = f;
+ chart->nfaces++;
+ }
+
+ chart->collapsed_verts = NULL;
+ chart->collapsed_edges = NULL;
+ chart->collapsed_faces = NULL;
+}
+
+static void p_chart_simplify_compute(PChart *chart)
+{
+ /* Computes a list of edge collapses / vertex splits. The collapsed
+ simplices go in the chart->collapsed_* lists, The original and
+ collapsed may then be view as stacks, where the next collapse/split
+ is at the top of the respective lists. */
+
+ Heap *heap = BLI_heap_new();
+ PVert *v, **wheelverts;
+ PEdge *collapsededges = NULL, *e;
+ int nwheelverts, i, ncollapsed = 0;
+
+ wheelverts = MEM_mallocN(sizeof(PVert*)*chart->nverts, "PChartWheelVerts");
+
+ /* insert all potential collapses into heap */
+ for (v=chart->verts; v; v=v->nextlink) {
+ float cost;
+ PEdge *e = NULL;
+
+ p_collapse_cost_vertex(v, &cost, &e);
+
+ if (e)
+ v->u.heaplink = BLI_heap_insert(heap, cost, e);
+ else
+ v->u.heaplink = NULL;
+ }
+
+ for (e=chart->edges; e; e=e->nextlink)
+ e->u.nextcollapse = NULL;
+
+ /* pop edge collapse out of heap one by one */
+ while (!BLI_heap_empty(heap)) {
+ if (ncollapsed == NCOLLAPSE)
+ break;
+
+ HeapNode *link = BLI_heap_top(heap);
+ PEdge *edge = (PEdge*)BLI_heap_popmin(heap), *pair = edge->pair;
+ PVert *oldv, *keepv;
+ PEdge *wheele, *nexte;
+
+ /* remember the edges we collapsed */
+ edge->u.nextcollapse = collapsededges;
+ collapsededges = edge;
+
+ if (edge->vert->u.heaplink != link) {
+ edge->flag |= (PEDGE_COLLAPSE_EDGE|PEDGE_COLLAPSE_PAIR);
+ edge->next->vert->u.heaplink = NULL;
+ SWAP(PEdge*, edge, pair);
+ }
+ else {
+ edge->flag |= PEDGE_COLLAPSE_EDGE;
+ edge->vert->u.heaplink = NULL;
+ }
+
+ p_collapsing_verts(edge, pair, &oldv, &keepv);
+
+ /* gather all wheel verts and remember them before collapse */
+ nwheelverts = 0;
+ wheele = oldv->edge;
+
+ do {
+ wheelverts[nwheelverts++] = wheele->next->vert;
+ nexte = p_wheel_edge_next(wheele);
+
+ if (nexte == NULL)
+ wheelverts[nwheelverts++] = wheele->next->next->vert;
+
+ wheele = nexte;
+ } while (wheele && (wheele != oldv->edge));
+
+ /* collapse */
+ p_collapse_edge(edge, pair);
+
+ for (i = 0; i < nwheelverts; i++) {
+ float cost;
+ PEdge *collapse = NULL;
+
+ v = wheelverts[i];
+
+ if (v->u.heaplink) {
+ BLI_heap_remove(heap, v->u.heaplink);
+ v->u.heaplink = NULL;
+ }
+
+ p_collapse_cost_vertex(v, &cost, &collapse);
+
+ if (collapse)
+ v->u.heaplink = BLI_heap_insert(heap, cost, collapse);
+ }
+
+ ncollapsed++;
+ }
+
+ MEM_freeN(wheelverts);
+ BLI_heap_free(heap, NULL);
+
+ p_chart_post_collapse_flush(chart, collapsededges);
+}
+
+static void p_chart_complexify(PChart *chart)
+{
+ PEdge *e, *pair, *edge;
+ PVert *newv, *keepv;
+ int x = 0;
+
+ for (e=chart->collapsed_edges; e; e=e->nextlink) {
+ if (!(e->flag & PEDGE_COLLAPSE_EDGE))
+ break;
+
+ edge = e;
+ pair = e->pair;
+
+ if (edge->flag & PEDGE_COLLAPSE_PAIR) {
+ SWAP(PEdge*, edge, pair);
+ }
+
+ p_split_vertex(edge, pair);
+ p_collapsing_verts(edge, pair, &newv, &keepv);
+
+ if (x >= NCOLLAPSEX) {
+ newv->uv[0] = keepv->uv[0];
+ newv->uv[1] = keepv->uv[1];
+ }
+ else {
+ p_vert_harmonic_insert(newv);
+ x++;
+ }
+ }
+
+ p_chart_post_split_flush(chart);
+}
+
+#if 0
+static void p_chart_simplify(PChart *chart)
+{
+ /* Not implemented, needs proper reordering in split_flush. */
+}
+#endif
+#endif
+
+/* ABF */
+
+#define ABF_MAX_ITER 20
+
+typedef struct PAbfSystem {
+ int ninterior, nfaces, nangles;
+ float *alpha, *beta, *sine, *cosine, *weight;
+ float *bAlpha, *bTriangle, *bInterior;
+ float *lambdaTriangle, *lambdaPlanar, *lambdaLength;
+ float (*J2dt)[3], *bstar, *dstar;
+ float minangle, maxangle;
+} PAbfSystem;
+
+static void p_abf_setup_system(PAbfSystem *sys)
+{
+ int i;
+
+ sys->alpha = (float*)MEM_mallocN(sizeof(float)*sys->nangles, "ABFalpha");
+ sys->beta = (float*)MEM_mallocN(sizeof(float)*sys->nangles, "ABFbeta");
+ sys->sine = (float*)MEM_mallocN(sizeof(float)*sys->nangles, "ABFsine");
+ sys->cosine = (float*)MEM_mallocN(sizeof(float)*sys->nangles, "ABFcosine");
+ sys->weight = (float*)MEM_mallocN(sizeof(float)*sys->nangles, "ABFweight");
+
+ sys->bAlpha = (float*)MEM_mallocN(sizeof(float)*sys->nangles, "ABFbalpha");
+ sys->bTriangle = (float*)MEM_mallocN(sizeof(float)*sys->nfaces, "ABFbtriangle");
+ sys->bInterior = (float*)MEM_mallocN(sizeof(float)*2*sys->ninterior, "ABFbinterior");
+
+ sys->lambdaTriangle = (float*)MEM_callocN(sizeof(float)*sys->nfaces, "ABFlambdatri");
+ sys->lambdaPlanar = (float*)MEM_callocN(sizeof(float)*sys->ninterior, "ABFlamdaplane");
+ sys->lambdaLength = (float*)MEM_mallocN(sizeof(float)*sys->ninterior, "ABFlambdalen");
+
+ sys->J2dt = MEM_mallocN(sizeof(float)*sys->nangles*3, "ABFj2dt");
+ sys->bstar = (float*)MEM_mallocN(sizeof(float)*sys->nfaces, "ABFbstar");
+ sys->dstar = (float*)MEM_mallocN(sizeof(float)*sys->nfaces, "ABFdstar");
+
+ for (i = 0; i < sys->ninterior; i++)
+ sys->lambdaLength[i] = 1.0;
+
+ sys->minangle = 7.5f*M_PI/180.0f;
+ sys->maxangle = M_PI - sys->minangle;
+}
+
+static void p_abf_free_system(PAbfSystem *sys)
+{
+ MEM_freeN(sys->alpha);
+ MEM_freeN(sys->beta);
+ MEM_freeN(sys->sine);
+ MEM_freeN(sys->cosine);
+ MEM_freeN(sys->weight);
+ MEM_freeN(sys->bAlpha);
+ MEM_freeN(sys->bTriangle);
+ MEM_freeN(sys->bInterior);
+ MEM_freeN(sys->lambdaTriangle);
+ MEM_freeN(sys->lambdaPlanar);
+ MEM_freeN(sys->lambdaLength);
+ MEM_freeN(sys->J2dt);
+ MEM_freeN(sys->bstar);
+ MEM_freeN(sys->dstar);
+}
+
+static void p_abf_compute_sines(PAbfSystem *sys)
+{
+ int i;
+ float *sine = sys->sine, *cosine = sys->cosine, *alpha = sys->alpha;
+
+ for (i = 0; i < sys->nangles; i++, sine++, cosine++, alpha++) {
+ *sine = sin(*alpha);
+ *cosine = cos(*alpha);
+ }
+}
+
+static float p_abf_compute_sin_product(PAbfSystem *sys, PVert *v, int aid)
+{
+ PEdge *e, *e1, *e2;
+ float sin1, sin2;
+
+ sin1 = sin2 = 1.0;
+
+ e = v->edge;
+ do {
+ e1 = e->next;
+ e2 = e->next->next;
+
+ if (aid == e1->u.id) {
+ /* we are computing a derivative for this angle,
+ so we use cos and drop the other part */
+ sin1 *= sys->cosine[e1->u.id];
+ sin2 = 0.0;
+ }
+ else
+ sin1 *= sys->sine[e1->u.id];
+
+ if (aid == e2->u.id) {
+ /* see above */
+ sin1 = 0.0;
+ sin2 *= sys->cosine[e2->u.id];
+ }
+ else
+ sin2 *= sys->sine[e2->u.id];
+
+ e = e->next->next->pair;
+ } while (e && (e != v->edge));
+
+ return (sin1 - sin2);
+}
+
+static float p_abf_compute_grad_alpha(PAbfSystem *sys, PFace *f, PEdge *e)
+{
+ PVert *v = e->vert, *v1 = e->next->vert, *v2 = e->next->next->vert;
+ float deriv;
+
+ deriv = (sys->alpha[e->u.id] - sys->beta[e->u.id])*sys->weight[e->u.id];
+ deriv += sys->lambdaTriangle[f->u.id];
+
+ if (v->flag & PVERT_INTERIOR) {
+ deriv += sys->lambdaPlanar[v->u.id];
+ }
+
+ if (v1->flag & PVERT_INTERIOR) {
+ float product = p_abf_compute_sin_product(sys, v1, e->u.id);
+ deriv += sys->lambdaLength[v1->u.id]*product;
+ }
+
+ if (v2->flag & PVERT_INTERIOR) {
+ float product = p_abf_compute_sin_product(sys, v2, e->u.id);
+ deriv += sys->lambdaLength[v2->u.id]*product;
+ }
+
+ return deriv;
+}
+
+static float p_abf_compute_gradient(PAbfSystem *sys, PChart *chart)
+{
+ PFace *f;
+ PEdge *e;
+ PVert *v;
+ float norm = 0.0;
+
+ for (f=chart->faces; f; f=f->nextlink) {
+ PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
+ float gtriangle, galpha1, galpha2, galpha3;
+
+ galpha1 = p_abf_compute_grad_alpha(sys, f, e1);
+ galpha2 = p_abf_compute_grad_alpha(sys, f, e2);
+ galpha3 = p_abf_compute_grad_alpha(sys, f, e3);
+
+ sys->bAlpha[e1->u.id] = -galpha1;
+ sys->bAlpha[e2->u.id] = -galpha2;
+ sys->bAlpha[e3->u.id] = -galpha3;
+
+ norm += galpha1*galpha1 + galpha2*galpha2 + galpha3*galpha3;
+
+ gtriangle = sys->alpha[e1->u.id] + sys->alpha[e2->u.id] + sys->alpha[e3->u.id] - M_PI;
+ sys->bTriangle[f->u.id] = -gtriangle;
+ norm += gtriangle*gtriangle;
+ }
+
+ for (v=chart->verts; v; v=v->nextlink) {
+ if (v->flag & PVERT_INTERIOR) {
+ float gplanar = -2*M_PI, glength;
+
+ e = v->edge;
+ do {
+ gplanar += sys->alpha[e->u.id];
+ e = e->next->next->pair;
+ } while (e && (e != v->edge));
+
+ sys->bInterior[v->u.id] = -gplanar;
+ norm += gplanar*gplanar;
+
+ glength = p_abf_compute_sin_product(sys, v, -1);
+ sys->bInterior[sys->ninterior + v->u.id] = -glength;
+ norm += glength*glength;
+ }
+ }
+
+ return norm;
+}
+
+static PBool p_abf_matrix_invert(PAbfSystem *sys, PChart *chart)
+{
+ PFace *f;
+ PEdge *e;
+ int i, j, ninterior = sys->ninterior, nvar = 2*sys->ninterior;
+ PBool success;
+
+ nlNewContext();
+ nlSolverParameteri(NL_NB_VARIABLES, nvar);
+
+ nlBegin(NL_SYSTEM);
+
+ nlBegin(NL_MATRIX);
+
+ for (i = 0; i < nvar; i++)
+ nlRightHandSideAdd(0, i, sys->bInterior[i]);
+
+ for (f=chart->faces; f; f=f->nextlink) {
+ float wi1, wi2, wi3, b, si, beta[3], j2[3][3], W[3][3];
+ float row1[6], row2[6], row3[6];
+ int vid[6];
+ PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
+ PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert;
+
+ wi1 = 1.0/sys->weight[e1->u.id];
+ wi2 = 1.0/sys->weight[e2->u.id];
+ wi3 = 1.0/sys->weight[e3->u.id];
+
+ /* bstar1 = (J1*dInv*bAlpha - bTriangle) */
+ b = sys->bAlpha[e1->u.id]*wi1;
+ b += sys->bAlpha[e2->u.id]*wi2;
+ b += sys->bAlpha[e3->u.id]*wi3;
+ b -= sys->bTriangle[f->u.id];
+
+ /* si = J1*d*J1t */
+ si = 1.0/(wi1 + wi2 + wi3);
+
+ /* J1t*si*bstar1 - bAlpha */
+ beta[0] = b*si - sys->bAlpha[e1->u.id];
+ beta[1] = b*si - sys->bAlpha[e2->u.id];
+ beta[2] = b*si - sys->bAlpha[e3->u.id];
+
+ /* use this later for computing other lambda's */
+ sys->bstar[f->u.id] = b;
+ sys->dstar[f->u.id] = si;
+
+ /* set matrix */
+ W[0][0] = si - sys->weight[e1->u.id]; W[0][1] = si; W[0][2] = si;
+ W[1][0] = si; W[1][1] = si - sys->weight[e2->u.id]; W[1][2] = si;
+ W[2][0] = si; W[2][1] = si; W[2][2] = si - sys->weight[e3->u.id];
+
+ vid[0] = vid[1] = vid[2] = vid[3] = vid[4] = vid[5] = -1;
+
+ if (v1->flag & PVERT_INTERIOR) {
+ vid[0] = v1->u.id;
+ vid[3] = ninterior + v1->u.id;
+
+ sys->J2dt[e1->u.id][0] = j2[0][0] = 1.0*wi1;
+ sys->J2dt[e2->u.id][0] = j2[1][0] = p_abf_compute_sin_product(sys, v1, e2->u.id)*wi2;
+ sys->J2dt[e3->u.id][0] = j2[2][0] = p_abf_compute_sin_product(sys, v1, e3->u.id)*wi3;
+
+ nlRightHandSideAdd(0, v1->u.id, j2[0][0]*beta[0]);
+ nlRightHandSideAdd(0, ninterior + v1->u.id, j2[1][0]*beta[1] + j2[2][0]*beta[2]);
+
+ row1[0] = j2[0][0]*W[0][0];
+ row2[0] = j2[0][0]*W[1][0];
+ row3[0] = j2[0][0]*W[2][0];
+
+ row1[3] = j2[1][0]*W[0][1] + j2[2][0]*W[0][2];
+ row2[3] = j2[1][0]*W[1][1] + j2[2][0]*W[1][2];
+ row3[3] = j2[1][0]*W[2][1] + j2[2][0]*W[2][2];
+ }
+
+ if (v2->flag & PVERT_INTERIOR) {
+ vid[1] = v2->u.id;
+ vid[4] = ninterior + v2->u.id;
+
+ sys->J2dt[e1->u.id][1] = j2[0][1] = p_abf_compute_sin_product(sys, v2, e1->u.id)*wi1;
+ sys->J2dt[e2->u.id][1] = j2[1][1] = 1.0*wi2;
+ sys->J2dt[e3->u.id][1] = j2[2][1] = p_abf_compute_sin_product(sys, v2, e3->u.id)*wi3;
+
+ nlRightHandSideAdd(0, v2->u.id, j2[1][1]*beta[1]);
+ nlRightHandSideAdd(0, ninterior + v2->u.id, j2[0][1]*beta[0] + j2[2][1]*beta[2]);
+
+ row1[1] = j2[1][1]*W[0][1];
+ row2[1] = j2[1][1]*W[1][1];
+ row3[1] = j2[1][1]*W[2][1];
+
+ row1[4] = j2[0][1]*W[0][0] + j2[2][1]*W[0][2];
+ row2[4] = j2[0][1]*W[1][0] + j2[2][1]*W[1][2];
+ row3[4] = j2[0][1]*W[2][0] + j2[2][1]*W[2][2];
+ }
+
+ if (v3->flag & PVERT_INTERIOR) {
+ vid[2] = v3->u.id;
+ vid[5] = ninterior + v3->u.id;
+
+ sys->J2dt[e1->u.id][2] = j2[0][2] = p_abf_compute_sin_product(sys, v3, e1->u.id)*wi1;
+ sys->J2dt[e2->u.id][2] = j2[1][2] = p_abf_compute_sin_product(sys, v3, e2->u.id)*wi2;
+ sys->J2dt[e3->u.id][2] = j2[2][2] = 1.0*wi3;
+
+ nlRightHandSideAdd(0, v3->u.id, j2[2][2]*beta[2]);
+ nlRightHandSideAdd(0, ninterior + v3->u.id, j2[0][2]*beta[0] + j2[1][2]*beta[1]);
+
+ row1[2] = j2[2][2]*W[0][2];
+ row2[2] = j2[2][2]*W[1][2];
+ row3[2] = j2[2][2]*W[2][2];
+
+ row1[5] = j2[0][2]*W[0][0] + j2[1][2]*W[0][1];
+ row2[5] = j2[0][2]*W[1][0] + j2[1][2]*W[1][1];
+ row3[5] = j2[0][2]*W[2][0] + j2[1][2]*W[2][1];
+ }
+
+ for (i = 0; i < 3; i++) {
+ int r = vid[i];
+
+ if (r == -1)
+ continue;
+
+ for (j = 0; j < 6; j++) {
+ int c = vid[j];
+
+ if (c == -1)
+ continue;
+
+ if (i == 0)
+ nlMatrixAdd(r, c, j2[0][i]*row1[j]);
+ else
+ nlMatrixAdd(r + ninterior, c, j2[0][i]*row1[j]);
+
+ if (i == 1)
+ nlMatrixAdd(r, c, j2[1][i]*row2[j]);
+ else
+ nlMatrixAdd(r + ninterior, c, j2[1][i]*row2[j]);
+
+
+ if (i == 2)
+ nlMatrixAdd(r, c, j2[2][i]*row3[j]);
+ else
+ nlMatrixAdd(r + ninterior, c, j2[2][i]*row3[j]);
+ }
+ }
+ }
+
+ nlEnd(NL_MATRIX);
+
+ nlEnd(NL_SYSTEM);
+
+ success = nlSolve();
+
+ if (success) {
+ for (f=chart->faces; f; f=f->nextlink) {
+ float dlambda1, pre[3], dalpha;
+ PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
+ PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert;
+
+ pre[0] = pre[1] = pre[2] = 0.0;
+
+ if (v1->flag & PVERT_INTERIOR) {
+ float x = nlGetVariable(0, v1->u.id);
+ float x2 = nlGetVariable(0, ninterior + v1->u.id);
+ pre[0] += sys->J2dt[e1->u.id][0]*x;
+ pre[1] += sys->J2dt[e2->u.id][0]*x2;
+ pre[2] += sys->J2dt[e3->u.id][0]*x2;
+ }
+
+ if (v2->flag & PVERT_INTERIOR) {
+ float x = nlGetVariable(0, v2->u.id);
+ float x2 = nlGetVariable(0, ninterior + v2->u.id);
+ pre[0] += sys->J2dt[e1->u.id][1]*x2;
+ pre[1] += sys->J2dt[e2->u.id][1]*x;
+ pre[2] += sys->J2dt[e3->u.id][1]*x2;
+ }
+
+ if (v3->flag & PVERT_INTERIOR) {
+ float x = nlGetVariable(0, v3->u.id);
+ float x2 = nlGetVariable(0, ninterior + v3->u.id);
+ pre[0] += sys->J2dt[e1->u.id][2]*x2;
+ pre[1] += sys->J2dt[e2->u.id][2]*x2;
+ pre[2] += sys->J2dt[e3->u.id][2]*x;
+ }
+
+ dlambda1 = pre[0] + pre[1] + pre[2];
+ dlambda1 = sys->dstar[f->u.id]*(sys->bstar[f->u.id] - dlambda1);
+
+ sys->lambdaTriangle[f->u.id] += dlambda1;
+
+ dalpha = (sys->bAlpha[e1->u.id] - dlambda1);
+ sys->alpha[e1->u.id] += dalpha/sys->weight[e1->u.id] - pre[0];
+
+ dalpha = (sys->bAlpha[e2->u.id] - dlambda1);
+ sys->alpha[e2->u.id] += dalpha/sys->weight[e2->u.id] - pre[1];
+
+ dalpha = (sys->bAlpha[e3->u.id] - dlambda1);
+ sys->alpha[e3->u.id] += dalpha/sys->weight[e3->u.id] - pre[2];
+
+ /* clamp */
+ e = f->edge;
+ do {
+ if (sys->alpha[e->u.id] > M_PI)
+ sys->alpha[e->u.id] = M_PI;
+ else if (sys->alpha[e->u.id] < 0.0f)
+ sys->alpha[e->u.id] = 0.0f;
+ } while (e != f->edge);
+ }
+
+ for (i = 0; i < ninterior; i++) {
+ sys->lambdaPlanar[i] += nlGetVariable(0, i);
+ sys->lambdaLength[i] += nlGetVariable(0, ninterior + i);
+ }
+ }
+
+ nlDeleteContext(nlGetCurrent());
+
+ return success;
+}
+
+static PBool p_chart_abf_solve(PChart *chart)
+{
+ PVert *v;
+ PFace *f;
+ PEdge *e, *e1, *e2, *e3;
+ PAbfSystem sys;
+ int i;
+ float lastnorm, limit = (chart->nfaces > 100)? 1.0f: 0.001f;
+
+ /* setup id's */
+ sys.ninterior = sys.nfaces = sys.nangles = 0;
+
+ for (v=chart->verts; v; v=v->nextlink) {
+ if (p_vert_interior(v)) {
+ v->flag |= PVERT_INTERIOR;
+ v->u.id = sys.ninterior++;
+ }
+ else
+ v->flag &= ~PVERT_INTERIOR;
+ }
+
+ for (f=chart->faces; f; f=f->nextlink) {
+ e1 = f->edge; e2 = e1->next; e3 = e2->next;
+ f->u.id = sys.nfaces++;
+
+ /* angle id's are conveniently stored in half edges */
+ e1->u.id = sys.nangles++;
+ e2->u.id = sys.nangles++;
+ e3->u.id = sys.nangles++;
+ }
+
+ p_abf_setup_system(&sys);
+
+ /* compute initial angles */
+ for (f=chart->faces; f; f=f->nextlink) {
+ float a1, a2, a3;
+
+ e1 = f->edge; e2 = e1->next; e3 = e2->next;
+ p_face_angles(f, &a1, &a2, &a3);
+
+ if (a1 < sys.minangle)
+ a1 = sys.minangle;
+ else if (a1 > sys.maxangle)
+ a1 = sys.maxangle;
+ if (a2 < sys.minangle)
+ a2 = sys.minangle;
+ else if (a2 > sys.maxangle)
+ a2 = sys.maxangle;
+ if (a3 < sys.minangle)
+ a3 = sys.minangle;
+ else if (a3 > sys.maxangle)
+ a3 = sys.maxangle;
+
+ sys.alpha[e1->u.id] = sys.beta[e1->u.id] = a1;
+ sys.alpha[e2->u.id] = sys.beta[e2->u.id] = a2;
+ sys.alpha[e3->u.id] = sys.beta[e3->u.id] = a3;
+
+ sys.weight[e1->u.id] = 2.0/(a1*a1);
+ sys.weight[e2->u.id] = 2.0/(a2*a2);
+ sys.weight[e3->u.id] = 2.0/(a3*a3);
+ }
+
+ for (v=chart->verts; v; v=v->nextlink) {
+ if (v->flag & PVERT_INTERIOR) {
+ float anglesum = 0.0, scale;
+
+ e = v->edge;
+ do {
+ anglesum += sys.beta[e->u.id];
+ e = e->next->next->pair;
+ } while (e && (e != v->edge));
+
+ scale = (anglesum == 0.0f)? 0.0f: 2*M_PI/anglesum;
+
+ e = v->edge;
+ do {
+ sys.beta[e->u.id] = sys.alpha[e->u.id] = sys.beta[e->u.id]*scale;
+ e = e->next->next->pair;
+ } while (e && (e != v->edge));
+ }
+ }
+
+ if (sys.ninterior > 0) {
+ p_abf_compute_sines(&sys);
+
+ /* iteration */
+ lastnorm = 1e10;
+
+ for (i = 0; i < ABF_MAX_ITER; i++) {
+ float norm = p_abf_compute_gradient(&sys, chart);
+
+ lastnorm = norm;
+
+ if (norm < limit)
+ break;
+
+ if (!p_abf_matrix_invert(&sys, chart)) {
+ param_warning("ABF failed to invert matrix.");
+ p_abf_free_system(&sys);
+ return P_FALSE;
+ }
+
+ p_abf_compute_sines(&sys);
+ }
+
+ if (i == ABF_MAX_ITER) {
+ param_warning("ABF maximum iterations reached.");
+ p_abf_free_system(&sys);
+ return P_FALSE;
+ }
+ }
+
+ chart->u.lscm.abf_alpha = MEM_dupallocN(sys.alpha);
+ p_abf_free_system(&sys);
+
+ return P_TRUE;
+}
+
+/* Least Squares Conformal Maps */
+
+static void p_chart_pin_positions(PChart *chart, PVert **pin1, PVert **pin2)
+{
+ if (pin1 == pin2) {
+ /* degenerate case */
+ PFace *f = chart->faces;
+ *pin1 = f->edge->vert;
+ *pin2 = f->edge->next->vert;
+
+ (*pin1)->uv[0] = 0.0f;
+ (*pin1)->uv[1] = 0.5f;
+ (*pin2)->uv[0] = 1.0f;
+ (*pin2)->uv[1] = 0.5f;
+ }
+ else {
+ int diru, dirv, dirx, diry;
+ float sub[3];
+
+ VecSubf(sub, (*pin1)->co, (*pin2)->co);
+ sub[0] = fabs(sub[0]);
+ sub[1] = fabs(sub[1]);
+ sub[2] = fabs(sub[2]);
+
+ if ((sub[0] > sub[1]) && (sub[0] > sub[2])) {
+ dirx = 0;
+ diry = (sub[1] > sub[2])? 1: 2;
+ }
+ else if ((sub[1] > sub[0]) && (sub[1] > sub[2])) {
+ dirx = 1;
+ diry = (sub[0] > sub[2])? 0: 2;
+ }
+ else {
+ dirx = 2;
+ diry = (sub[0] > sub[1])? 0: 1;
+ }
+
+ if (dirx == 2) {
+ diru = 1;
+ dirv = 0;
+ }
+ else {
+ diru = 0;
+ dirv = 1;
+ }
+
+ (*pin1)->uv[diru] = (*pin1)->co[dirx];
+ (*pin1)->uv[dirv] = (*pin1)->co[diry];
+ (*pin2)->uv[diru] = (*pin2)->co[dirx];
+ (*pin2)->uv[dirv] = (*pin2)->co[diry];
+ }
+}
+
+static PBool p_chart_symmetry_pins(PChart *chart, PEdge *outer, PVert **pin1, PVert **pin2)
+{
+ PEdge *be, *lastbe = NULL, *maxe1 = NULL, *maxe2 = NULL, *be1, *be2;
+ PEdge *cure = NULL, *firste1 = NULL, *firste2 = NULL, *nextbe;
+ float maxlen = 0.0f, curlen = 0.0f, totlen = 0.0f, firstlen = 0.0f;
+ float len1, len2;
+
+ /* find longest series of verts split in the chart itself, these are
+ marked during construction */
+ be = outer;
+ lastbe = p_boundary_edge_prev(be);
+ do {
+ float len = p_edge_length(be);
+ totlen += len;
+
+ nextbe = p_boundary_edge_next(be);
+
+ if ((be->vert->flag & PVERT_SPLIT) ||
+ (lastbe->vert->flag & nextbe->vert->flag & PVERT_SPLIT)) {
+ if (!cure) {
+ if (be == outer)
+ firste1 = be;
+ cure = be;
+ }
+ else
+ curlen += p_edge_length(lastbe);
+ }
+ else if (cure) {
+ if (curlen > maxlen) {
+ maxlen = curlen;
+ maxe1 = cure;
+ maxe2 = lastbe;
+ }
+
+ if (firste1 == cure) {
+ firstlen = curlen;
+ firste2 = lastbe;
+ }
+
+ curlen = 0.0f;
+ cure = NULL;
+ }
+
+ lastbe = be;
+ be = nextbe;
+ } while(be != outer);
+
+ /* make sure we also count a series of splits over the starting point */
+ if (cure && (cure != outer)) {
+ firstlen += curlen + p_edge_length(be);
+
+ if (firstlen > maxlen) {
+ maxlen = firstlen;
+ maxe1 = cure;
+ maxe2 = firste2;
+ }
+ }
+
+ if (!maxe1 || !maxe2 || (maxlen < 0.5f*totlen))
+ return P_FALSE;
+
+ /* find pin1 in the split vertices */
+ be1 = maxe1;
+ be2 = maxe2;
+ len1 = 0.0f;
+ len2 = 0.0f;
+
+ do {
+ if (len1 < len2) {
+ len1 += p_edge_length(be1);
+ be1 = p_boundary_edge_next(be1);
+ }
+ else {
+ be2 = p_boundary_edge_prev(be2);
+ len2 += p_edge_length(be2);
+ }
+ } while (be1 != be2);
+
+ *pin1 = be1->vert;
+
+ /* find pin2 outside the split vertices */
+ be1 = maxe1;
+ be2 = maxe2;
+ len1 = 0.0f;
+ len2 = 0.0f;
+
+ do {
+ if (len1 < len2) {
+ be1 = p_boundary_edge_prev(be1);
+ len1 += p_edge_length(be1);
+ }
+ else {
+ len2 += p_edge_length(be2);
+ be2 = p_boundary_edge_next(be2);
+ }
+ } while (be1 != be2);
+
+ *pin2 = be1->vert;
+
+ p_chart_pin_positions(chart, pin1, pin2);
+
+ return P_TRUE;
+}
+
+static void p_chart_extrema_verts(PChart *chart, PVert **pin1, PVert **pin2)
+{
+ float minv[3], maxv[3], dirlen;
+ PVert *v, *minvert[3], *maxvert[3];
+ int i, dir;
+
+ /* find minimum and maximum verts over x/y/z axes */
+ minv[0] = minv[1] = minv[2] = 1e20;
+ maxv[0] = maxv[1] = maxv[2] = -1e20;
+
+ minvert[0] = minvert[1] = minvert[2] = NULL;
+ maxvert[0] = maxvert[1] = maxvert[2] = NULL;
+
+ for (v = chart->verts; v; v=v->nextlink) {
+ for (i = 0; i < 3; i++) {
+ if (v->co[i] < minv[i]) {
+ minv[i] = v->co[i];
+ minvert[i] = v;
+ }
+ if (v->co[i] > maxv[i]) {
+ maxv[i] = v->co[i];
+ maxvert[i] = v;
+ }
+ }
+ }
+
+ /* find axes with longest distance */
+ dir = 0;
+ dirlen = -1.0;
+
+ for (i = 0; i < 3; i++) {
+ if (maxv[i] - minv[i] > dirlen) {
+ dir = i;
+ dirlen = maxv[i] - minv[i];
+ }
+ }
+
+ *pin1 = minvert[dir];
+ *pin2 = maxvert[dir];
+
+ p_chart_pin_positions(chart, pin1, pin2);
+}
+
+static void p_chart_lscm_load_solution(PChart *chart)
+{
+ PVert *v;
+
+ for (v=chart->verts; v; v=v->nextlink) {
+ v->uv[0] = nlGetVariable(0, 2*v->u.id);
+ v->uv[1] = nlGetVariable(0, 2*v->u.id + 1);
+ }
+}
+
+static void p_chart_lscm_begin(PChart *chart, PBool live, PBool abf)
+{
+ PVert *v, *pin1, *pin2;
+ PBool select = P_FALSE, deselect = P_FALSE;
+ int npins = 0, id = 0;
+
+ /* give vertices matrix indices and count pins */
+ for (v=chart->verts; v; v=v->nextlink) {
+ if (v->flag & PVERT_PIN) {
+ npins++;
+ if (v->flag & PVERT_SELECT)
+ select = P_TRUE;
+ }
+
+ if (!(v->flag & PVERT_SELECT))
+ deselect = P_TRUE;
+ }
+
+ if ((live && (!select || !deselect)) || (npins == 1)) {
+ chart->u.lscm.context = NULL;
+ }
+ else {
+#if 0
+ p_chart_simplify_compute(chart);
+ p_chart_topological_sanity_check(chart);
+#endif
+
+ if (abf) {
+ if (!p_chart_abf_solve(chart))
+ param_warning("ABF solving failed: falling back to LSCM.\n");
+ }
+
+ if (npins <= 1) {
+ /* not enough pins, lets find some ourself */
+ PEdge *outer;
+
+ p_chart_boundaries(chart, NULL, &outer);
+
+ if (!p_chart_symmetry_pins(chart, outer, &pin1, &pin2))
+ p_chart_extrema_verts(chart, &pin1, &pin2);
+
+ chart->u.lscm.pin1 = pin1;
+ chart->u.lscm.pin2 = pin2;
+ }
+ else {
+ chart->flag |= PCHART_NOPACK;
+ }
+
+ for (v=chart->verts; v; v=v->nextlink)
+ v->u.id = id++;
+
+ nlNewContext();
+ nlSolverParameteri(NL_NB_VARIABLES, 2*chart->nverts);
+ nlSolverParameteri(NL_NB_ROWS, 2*chart->nfaces);
+ nlSolverParameteri(NL_LEAST_SQUARES, NL_TRUE);
+
+ chart->u.lscm.context = nlGetCurrent();
+ }
+}
+
+static PBool p_chart_lscm_solve(PChart *chart)
+{
+ PVert *v, *pin1 = chart->u.lscm.pin1, *pin2 = chart->u.lscm.pin2;
+ PFace *f;
+ float *alpha = chart->u.lscm.abf_alpha;
+ int row;
+
+ nlMakeCurrent(chart->u.lscm.context);
+
+ nlBegin(NL_SYSTEM);
+
+#if 0
+ /* TODO: make loading pins work for simplify/complexify. */
+#endif
+
+ for (v=chart->verts; v; v=v->nextlink)
+ if (v->flag & PVERT_PIN)
+ p_vert_load_pin_select_uvs(v); /* reload for live */
+
+ if (chart->u.lscm.pin1) {
+ nlLockVariable(2*pin1->u.id);
+ nlLockVariable(2*pin1->u.id + 1);
+ nlLockVariable(2*pin2->u.id);
+ nlLockVariable(2*pin2->u.id + 1);
+
+ nlSetVariable(0, 2*pin1->u.id, pin1->uv[0]);
+ nlSetVariable(0, 2*pin1->u.id + 1, pin1->uv[1]);
+ nlSetVariable(0, 2*pin2->u.id, pin2->uv[0]);
+ nlSetVariable(0, 2*pin2->u.id + 1, pin2->uv[1]);
+ }
+ else {
+ /* set and lock the pins */
+ for (v=chart->verts; v; v=v->nextlink) {
+ if (v->flag & PVERT_PIN) {
+ nlLockVariable(2*v->u.id);
+ nlLockVariable(2*v->u.id + 1);
+
+ nlSetVariable(0, 2*v->u.id, v->uv[0]);
+ nlSetVariable(0, 2*v->u.id + 1, v->uv[1]);
+ }
+ }
+ }
+
+ /* construct matrix */
+
+ nlBegin(NL_MATRIX);
+
+ row = 0;
+ for (f=chart->faces; f; f=f->nextlink) {
+ PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
+ PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert;
+ float a1, a2, a3, ratio, cosine, sine;
+ float sina1, sina2, sina3, sinmax;
+
+ if (alpha) {
+ /* use abf angles if passed on */
+ a1 = *(alpha++);
+ a2 = *(alpha++);
+ a3 = *(alpha++);
+ }
+ else
+ p_face_angles(f, &a1, &a2, &a3);
+
+ sina1 = sin(a1);
+ sina2 = sin(a2);
+ sina3 = sin(a3);
+
+ sinmax = MAX3(sina1, sina2, sina3);
+
+ /* shift vertices to find most stable order */
+ #define SHIFT3(type, a, b, c) \
+ { type tmp; tmp = a; a = c; c = b; b = tmp; }
+
+ if (sina3 != sinmax) {
+ SHIFT3(PVert*, v1, v2, v3);
+ SHIFT3(float, a1, a2, a3);
+ SHIFT3(float, sina1, sina2, sina3);
+
+ if (sina2 == sinmax) {
+ SHIFT3(PVert*, v1, v2, v3);
+ SHIFT3(float, a1, a2, a3);
+ SHIFT3(float, sina1, sina2, sina3);
+ }
+ }
+
+ /* angle based lscm formulation */
+ ratio = (sina3 == 0.0f)? 1.0f: sina2/sina3;
+ cosine = cos(a1)*ratio;
+ sine = sina1*ratio;
+
+#if 0
+ nlBegin(NL_ROW);
+ nlCoefficient(2*v1->u.id, cosine - 1.0);
+ nlCoefficient(2*v1->u.id+1, -sine);
+ nlCoefficient(2*v2->u.id, -cosine);
+ nlCoefficient(2*v2->u.id+1, sine);
+ nlCoefficient(2*v3->u.id, 1.0);
+ nlEnd(NL_ROW);
+
+ nlBegin(NL_ROW);
+ nlCoefficient(2*v1->u.id, sine);
+ nlCoefficient(2*v1->u.id+1, cosine - 1.0);
+ nlCoefficient(2*v2->u.id, -sine);
+ nlCoefficient(2*v2->u.id+1, -cosine);
+ nlCoefficient(2*v3->u.id+1, 1.0);
+ nlEnd(NL_ROW);
+#else
+ nlMatrixAdd(row, 2*v1->u.id, cosine - 1.0);
+ nlMatrixAdd(row, 2*v1->u.id+1, -sine);
+ nlMatrixAdd(row, 2*v2->u.id, -cosine);
+ nlMatrixAdd(row, 2*v2->u.id+1, sine);
+ nlMatrixAdd(row, 2*v3->u.id, 1.0);
+ row++;
+
+ nlMatrixAdd(row, 2*v1->u.id, sine);
+ nlMatrixAdd(row, 2*v1->u.id+1, cosine - 1.0);
+ nlMatrixAdd(row, 2*v2->u.id, -sine);
+ nlMatrixAdd(row, 2*v2->u.id+1, -cosine);
+ nlMatrixAdd(row, 2*v3->u.id+1, 1.0);
+ row++;
+#endif
+ }
+
+ nlEnd(NL_MATRIX);
+
+ nlEnd(NL_SYSTEM);
+
+ if (nlSolveAdvanced(NULL, NL_TRUE)) {
+ p_chart_lscm_load_solution(chart);
+ return P_TRUE;
+ }
+ else {
+ for (v=chart->verts; v; v=v->nextlink) {
+ v->uv[0] = 0.0f;
+ v->uv[1] = 0.0f;
+ }
+ }
+
+ return P_FALSE;
+}
+
+static void p_chart_lscm_end(PChart *chart)
+{
+ if (chart->u.lscm.context)
+ nlDeleteContext(chart->u.lscm.context);
+
+ if (chart->u.lscm.abf_alpha) {
+ MEM_freeN(chart->u.lscm.abf_alpha);
+ chart->u.lscm.abf_alpha = NULL;
+ }
+
+ chart->u.lscm.context = NULL;
+ chart->u.lscm.pin1 = NULL;
+ chart->u.lscm.pin2 = NULL;
+}
+
+/* Stretch */
+
+#define P_STRETCH_ITER 20
+
+static void p_stretch_pin_boundary(PChart *chart)
+{
+ PVert *v;
+
+ for(v=chart->verts; v; v=v->nextlink)
+ if (v->edge->pair == NULL)
+ v->flag |= PVERT_PIN;
+ else
+ v->flag &= ~PVERT_PIN;
+}
+
+static float p_face_stretch(PFace *f)
+{
+ float T, w, tmp[3];
+ float Ps[3], Pt[3];
+ float a, c, area;
+ PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
+ PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert;
+
+ area = p_face_uv_area_signed(f);
+
+ if (area <= 0.0f) /* flipped face -> infinite stretch */
+ return 1e10f;
+
+ w= 1.0f/(2.0f*area);
+
+ /* compute derivatives */
+ VecCopyf(Ps, v1->co);
+ VecMulf(Ps, (v2->uv[1] - v3->uv[1]));
+
+ VecCopyf(tmp, v2->co);
+ VecMulf(tmp, (v3->uv[1] - v1->uv[1]));
+ VecAddf(Ps, Ps, tmp);
+
+ VecCopyf(tmp, v3->co);
+ VecMulf(tmp, (v1->uv[1] - v2->uv[1]));
+ VecAddf(Ps, Ps, tmp);
+
+ VecMulf(Ps, w);
+
+ VecCopyf(Pt, v1->co);
+ VecMulf(Pt, (v3->uv[0] - v2->uv[0]));
+
+ VecCopyf(tmp, v2->co);
+ VecMulf(tmp, (v1->uv[0] - v3->uv[0]));
+ VecAddf(Pt, Pt, tmp);
+
+ VecCopyf(tmp, v3->co);
+ VecMulf(tmp, (v2->uv[0] - v1->uv[0]));
+ VecAddf(Pt, Pt, tmp);
+
+ VecMulf(Pt, w);
+
+ /* Sander Tensor */
+ a= Inpf(Ps, Ps);
+ c= Inpf(Pt, Pt);
+
+ T = sqrt(0.5f*(a + c));
+ if (f->flag & PFACE_FILLED)
+ T *= 0.2;
+
+ return T;
+}
+
+static float p_stretch_compute_vertex(PVert *v)
+{
+ PEdge *e = v->edge;
+ float sum = 0.0f;
+
+ do {
+ sum += p_face_stretch(e->face);
+ e = p_wheel_edge_next(e);
+ } while (e && e != (v->edge));
+
+ return sum;
+}
+
+static void p_chart_stretch_minimize(PChart *chart, RNG *rng)
+{
+ PVert *v;
+ PEdge *e;
+ int j, nedges;
+ float orig_stretch, low, stretch_low, high, stretch_high, mid, stretch;
+ float orig_uv[2], dir[2], random_angle, trusted_radius;
+
+ for(v=chart->verts; v; v=v->nextlink) {
+ if((v->flag & PVERT_PIN) || !(v->flag & PVERT_SELECT))
+ continue;
+
+ orig_stretch = p_stretch_compute_vertex(v);
+ orig_uv[0] = v->uv[0];
+ orig_uv[1] = v->uv[1];
+
+ /* move vertex in a random direction */
+ trusted_radius = 0.0f;
+ nedges = 0;
+ e = v->edge;
+
+ do {
+ trusted_radius += p_edge_uv_length(e);
+ nedges++;
+
+ e = p_wheel_edge_next(e);
+ } while (e && e != (v->edge));
+
+ trusted_radius /= 2 * nedges;
+
+ random_angle = rng_getFloat(rng) * 2.0 * M_PI;
+ dir[0] = trusted_radius * cos(random_angle);
+ dir[1] = trusted_radius * sin(random_angle);
+
+ /* calculate old and new stretch */
+ low = 0;
+ stretch_low = orig_stretch;
+
+ Vec2Addf(v->uv, orig_uv, dir);
+ high = 1;
+ stretch = stretch_high = p_stretch_compute_vertex(v);
+
+ /* binary search for lowest stretch position */
+ for (j = 0; j < P_STRETCH_ITER; j++) {
+ mid = 0.5 * (low + high);
+ v->uv[0]= orig_uv[0] + mid*dir[0];
+ v->uv[1]= orig_uv[1] + mid*dir[1];
+ stretch = p_stretch_compute_vertex(v);
+
+ if (stretch_low < stretch_high) {
+ high = mid;
+ stretch_high = stretch;
+ }
+ else {
+ low = mid;
+ stretch_low = stretch;
+ }
+ }
+
+ /* no luck, stretch has increased, reset to old values */
+ if(stretch >= orig_stretch)
+ Vec2Copyf(v->uv, orig_uv);
+ }
+}
+
+/* Minimum area enclosing rectangle for packing */
+
+static int p_compare_geometric_uv(const void *a, const void *b)
+{
+ PVert *v1 = *(PVert**)a;
+ PVert *v2 = *(PVert**)b;
+
+ if (v1->uv[0] < v2->uv[0])
+ return -1;
+ else if (v1->uv[0] == v2->uv[0]) {
+ if (v1->uv[1] < v2->uv[1])
+ return -1;
+ else if (v1->uv[1] == v2->uv[1])
+ return 0;
+ else
+ return 1;
+ }
+ else
+ return 1;
+}
+
+static PBool p_chart_convex_hull(PChart *chart, PVert ***verts, int *nverts, int *right)
+{
+ /* Graham algorithm, taken from:
+ * http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/117225 */
+
+ PEdge *be, *e;
+ int npoints = 0, i, ulen, llen;
+ PVert **U, **L, **points, **p;
+
+ p_chart_boundaries(chart, NULL, &be);
+
+ if (!be)
+ return P_FALSE;
+
+ e = be;
+ do {
+ npoints++;
+ e = p_boundary_edge_next(e);
+ } while(e != be);
+
+ p = points = (PVert**)MEM_mallocN(sizeof(PVert*)*npoints*2, "PCHullpoints");
+ U = (PVert**)MEM_mallocN(sizeof(PVert*)*npoints, "PCHullU");
+ L = (PVert**)MEM_mallocN(sizeof(PVert*)*npoints, "PCHullL");
+
+ e = be;
+ do {
+ *p = e->vert;
+ p++;
+ e = p_boundary_edge_next(e);
+ } while(e != be);
+
+ qsort(points, npoints, sizeof(PVert*), p_compare_geometric_uv);
+
+ ulen = llen = 0;
+ for (p=points, i = 0; i < npoints; i++, p++) {
+ while ((ulen > 1) && (p_area_signed(U[ulen-2]->uv, (*p)->uv, U[ulen-1]->uv) <= 0))
+ ulen--;
+ while ((llen > 1) && (p_area_signed(L[llen-2]->uv, (*p)->uv, L[llen-1]->uv) >= 0))
+ llen--;
+
+ U[ulen] = *p;
+ ulen++;
+ L[llen] = *p;
+ llen++;
+ }
+
+ npoints = 0;
+ for (p=points, i = 0; i < ulen; i++, p++, npoints++)
+ *p = U[i];
+
+ /* the first and last point in L are left out, since they are also in U */
+ for (i = llen-2; i > 0; i--, p++, npoints++)
+ *p = L[i];
+
+ *verts = points;
+ *nverts = npoints;
+ *right = ulen - 1;
+
+ MEM_freeN(U);
+ MEM_freeN(L);
+
+ return P_TRUE;
+}
+
+float p_rectangle_area(float *p1, float *dir, float *p2, float *p3, float *p4)
+{
+ /* given 4 points on the rectangle edges and the direction of on edge,
+ compute the area of the rectangle */
+
+ float orthodir[2], corner1[2], corner2[2], corner3[2];
+
+ orthodir[0] = dir[1];
+ orthodir[1] = -dir[0];
+
+ if (!p_intersect_line_2d_dir(p1, dir, p2, orthodir, corner1))
+ return 1e10;
+
+ if (!p_intersect_line_2d_dir(p1, dir, p4, orthodir, corner2))
+ return 1e10;
+
+ if (!p_intersect_line_2d_dir(p3, dir, p4, orthodir, corner3))
+ return 1e10;
+
+ return Vec2Lenf(corner1, corner2)*Vec2Lenf(corner2, corner3);
+}
+
+static float p_chart_minimum_area_angle(PChart *chart)
+{
+ /* minimum area enclosing rectangle with rotating calipers, info:
+ * http://cgm.cs.mcgill.ca/~orm/maer.html */
+
+ float rotated, minarea, minangle, area, len;
+ float *angles, miny, maxy, v[2], a[4], mina;
+ int npoints, right, mini, maxi, i, idx[4], nextidx;
+ PVert **points, *p1, *p2, *p3, *p4, *p1n;
+
+ /* compute convex hull */
+ if (!p_chart_convex_hull(chart, &points, &npoints, &right))
+ return 0.0;
+
+ /* find left/top/right/bottom points, and compute angle for each point */
+ angles = MEM_mallocN(sizeof(float)*npoints, "PMinAreaAngles");
+
+ mini = maxi = 0;
+ miny = 1e10;
+ maxy = -1e10;
+
+ for (i = 0; i < npoints; i++) {
+ p1 = (i == 0)? points[npoints-1]: points[i-1];
+ p2 = points[i];
+ p3 = (i == npoints-1)? points[0]: points[i+1];
+
+ angles[i] = M_PI - p_vec2_angle(p1->uv, p2->uv, p3->uv);
+
+ if (points[i]->uv[1] < miny) {
+ miny = points[i]->uv[1];
+ mini = i;
+ }
+ if (points[i]->uv[1] > maxy) {
+ maxy = points[i]->uv[1];
+ maxi = i;
+ }
+ }
+
+ /* left, top, right, bottom */
+ idx[0] = 0;
+ idx[1] = maxi;
+ idx[2] = right;
+ idx[3] = mini;
+
+ v[0] = points[idx[0]]->uv[0];
+ v[1] = points[idx[0]]->uv[1] + 1.0f;
+ a[0] = p_vec2_angle(points[(idx[0]+1)%npoints]->uv, points[idx[0]]->uv, v);
+
+ v[0] = points[idx[1]]->uv[0] + 1.0f;
+ v[1] = points[idx[1]]->uv[1];
+ a[1] = p_vec2_angle(points[(idx[1]+1)%npoints]->uv, points[idx[1]]->uv, v);
+
+ v[0] = points[idx[2]]->uv[0];
+ v[1] = points[idx[2]]->uv[1] - 1.0f;
+ a[2] = p_vec2_angle(points[(idx[2]+1)%npoints]->uv, points[idx[2]]->uv, v);
+
+ v[0] = points[idx[3]]->uv[0] - 1.0f;
+ v[1] = points[idx[3]]->uv[1];
+ a[3] = p_vec2_angle(points[(idx[3]+1)%npoints]->uv, points[idx[3]]->uv, v);
+
+ /* 4 rotating calipers */
+
+ rotated = 0.0;
+ minarea = 1e10;
+ minangle = 0.0;
+
+ while (rotated <= M_PI/2) { /* INVESTIGATE: how far to rotate? */
+ /* rotate with the smallest angle */
+ mini = 0;
+ mina = 1e10;
+
+ for (i = 0; i < 4; i++)
+ if (a[i] < mina) {
+ mina = a[i];
+ mini = i;
+ }
+
+ rotated += mina;
+ nextidx = (idx[mini]+1)%npoints;
+
+ a[mini] = angles[nextidx];
+ a[(mini+1)%4] = a[(mini+1)%4] - mina;
+ a[(mini+2)%4] = a[(mini+2)%4] - mina;
+ a[(mini+3)%4] = a[(mini+3)%4] - mina;
+
+ /* compute area */
+ p1 = points[idx[mini]];
+ p1n = points[nextidx];
+ p2 = points[idx[(mini+1)%4]];
+ p3 = points[idx[(mini+2)%4]];
+ p4 = points[idx[(mini+3)%4]];
+
+ len = Vec2Lenf(p1->uv, p1n->uv);
+
+ if (len > 0.0f) {
+ len = 1.0/len;
+ v[0] = (p1n->uv[0] - p1->uv[0])*len;
+ v[1] = (p1n->uv[1] - p1->uv[1])*len;
+
+ area = p_rectangle_area(p1->uv, v, p2->uv, p3->uv, p4->uv);
+
+ /* remember smallest area */
+ if (area < minarea) {
+ minarea = area;
+ minangle = rotated;
+ }
+ }
+
+ idx[mini] = nextidx;
+ }
+
+ /* try keeping rotation as small as possible */
+ if (minangle > M_PI/4)
+ minangle -= M_PI/2;
+
+ MEM_freeN(angles);
+ MEM_freeN(points);
+
+ return minangle;
+}
+
+void p_chart_rotate_minimum_area(PChart *chart)
+{
+ float angle = p_chart_minimum_area_angle(chart);
+ float sine = sin(angle);
+ float cosine = cos(angle);
+ PVert *v;
+
+ for (v = chart->verts; v; v=v->nextlink) {
+ float oldu = v->uv[0], oldv = v->uv[1];
+ v->uv[0] = cosine*oldu - sine*oldv;
+ v->uv[1] = sine*oldu + cosine*oldv;
+ }
+}
+
+/* Area Smoothing */
+
+/* 2d bsp tree for inverse mapping - that's a bit silly */
+
+typedef struct SmoothTriangle {
+ float co1[2], co2[2], co3[2];
+ float oco1[2], oco2[2], oco3[2];
+} SmoothTriangle;
+
+typedef struct SmoothNode {
+ struct SmoothNode *c1, *c2;
+ SmoothTriangle **tri;
+ float split;
+ int axis, ntri;
+} SmoothNode;
+
+static void p_barycentric_2d(float *v1, float *v2, float *v3, float *p, float *b)
+{
+ float a[2], c[2], h[2], div;
+
+ a[0] = v2[0] - v1[0];
+ a[1] = v2[1] - v1[1];
+ c[0] = v3[0] - v1[0];
+ c[1] = v3[1] - v1[1];
+
+ div = a[0]*c[1] - a[1]*c[0];
+
+ if (div == 0.0f) {
+ b[0] = 1.0f/3.0f;
+ b[1] = 1.0f/3.0f;
+ b[2] = 1.0f/3.0f;
+ }
+ else {
+ h[0] = p[0] - v1[0];
+ h[1] = p[1] - v1[1];
+
+ div = 1.0f/div;
+
+ b[1] = (h[0]*c[1] - h[1]*c[0])*div;
+ b[2] = (a[0]*h[1] - a[1]*h[0])*div;
+ b[0] = 1.0 - b[1] - b[2];
+ }
+}
+
+static PBool p_triangle_inside(SmoothTriangle *t, float *co)
+{
+ float b[3];
+
+ p_barycentric_2d(t->co1, t->co2, t->co3, co, b);
+
+ if ((b[0] >= 0.0) && (b[1] >= 0.0) && (b[2] >= 0.0f)) {
+ co[0] = t->oco1[0]*b[0] + t->oco2[0]*b[1] + t->oco3[0]*b[2];
+ co[1] = t->oco1[1]*b[0] + t->oco2[1]*b[1] + t->oco3[1]*b[2];
+ return P_TRUE;
+ }
+
+ return P_FALSE;
+}
+
+static SmoothNode *p_node_new(MemArena *arena, SmoothTriangle **tri, int ntri, float *bmin, float *bmax, int depth)
+{
+ SmoothNode *node = BLI_memarena_alloc(arena, sizeof *node);
+ int axis, i, t1size = 0, t2size = 0;
+ float split, mi, mx;
+ SmoothTriangle **t1, **t2, *t;
+
+ node->tri = tri;
+ node->ntri = ntri;
+
+ if (ntri <= 10 || depth >= 15)
+ return node;
+
+ t1 = MEM_mallocN(sizeof(SmoothTriangle)*ntri, "PNodeTri1");
+ t2 = MEM_mallocN(sizeof(SmoothTriangle)*ntri, "PNodeTri1");
+
+ axis = (bmax[0] - bmin[0] > bmax[1] - bmin[1])? 0: 1;
+ split = 0.5f*(bmin[axis] + bmax[axis]);
+
+ for (i = 0; i < ntri; i++) {
+ t = tri[i];
+
+ if ((t->co1[axis] <= split) || (t->co2[axis] <= split) || (t->co3[axis] <= split)) {
+ t1[t1size] = t;
+ t1size++;
+ }
+ if ((t->co1[axis] >= split) || (t->co2[axis] >= split) || (t->co3[axis] >= split)) {
+ t2[t2size] = t;
+ t2size++;
+ }
+ }
+
+ if ((t1size == t2size) && (t1size == ntri)) {
+ MEM_freeN(t1);
+ MEM_freeN(t2);
+ return node;
+ }
+
+ node->tri = NULL;
+ node->ntri = 0;
+ MEM_freeN(tri);
+
+ node->axis = axis;
+ node->split = split;
+
+ mi = bmin[axis];
+ mx = bmax[axis];
+ bmax[axis] = split;
+ node->c1 = p_node_new(arena, t1, t1size, bmin, bmax, depth+1);
+
+ bmin[axis] = bmax[axis];
+ bmax[axis] = mx;
+ node->c2 = p_node_new(arena, t2, t2size, bmin, bmax, depth+1);
+
+ return node;
+}
+
+static void p_node_delete(SmoothNode *node)
+{
+ if (node->c1)
+ p_node_delete(node->c1);
+ if (node->c2)
+ p_node_delete(node->c2);
+ if (node->tri)
+ MEM_freeN(node->tri);
+}
+
+static PBool p_node_intersect(SmoothNode *node, float *co)
+{
+ int i;
+
+ if (node->tri) {
+ for (i = 0; i < node->ntri; i++)
+ if (p_triangle_inside(node->tri[i], co))
+ return P_TRUE;
+
+ return P_FALSE;
+ }
+ else {
+ if (co[node->axis] < node->split)
+ return p_node_intersect(node->c1, co);
+ else
+ return p_node_intersect(node->c2, co);
+ }
+
+}
+
+/* smooothing */
+
+static int p_compare_float(const void *a, const void *b)
+{
+ if (*((float*)a) < *((float*)b))
+ return -1;
+ else if (*((float*)a) == *((float*)b))
+ return 0;
+ else
+ return 1;
+}
+
+static float p_smooth_median_edge_length(PChart *chart)
+{
+ PEdge *e;
+ float *lengths = MEM_mallocN(sizeof(chart->edges)*chart->nedges, "PMedianLength");
+ float median;
+ int i;
+
+ /* ok, so i'm lazy */
+ for (i=0, e=chart->edges; e; e=e->nextlink, i++)
+ lengths[i] = p_edge_length(e);
+
+ qsort(lengths, i, sizeof(float), p_compare_float);
+
+ median = lengths[i/2];
+ MEM_freeN(lengths);
+
+ return median;
+}
+
+static float p_smooth_distortion(PEdge *e, float avg2d, float avg3d)
+{
+ float len2d = p_edge_uv_length(e)*avg3d;
+ float len3d = p_edge_length(e)*avg2d;
+
+ return (len3d == 0.0f)? 0.0f: len2d/len3d;
+}
+
+void p_smooth(PChart *chart)
+{
+ PEdge *e;
+ PVert *v;
+ PFace *f;
+ int j, it2, maxiter2, it;
+ int nedges = chart->nedges, nwheel, gridx, gridy;
+ int edgesx, edgesy, nsize, esize, i, x, y, maxiter, totiter;
+ float minv[2], maxv[2], median, invmedian, distortion, avglen2d, avglen3d;
+ float center[2], dx, dy, *nodes, dlimit, d, *oldnodesx, *oldnodesy;
+ float *nodesx, *nodesy, *hedges, *vedges, climit, moved, padding;
+ SmoothTriangle *triangles, *t, *t2, **tri, **trip;
+ SmoothNode *root;
+ MemArena *arena;
+
+ if (nedges == 0)
+ return;
+
+ p_chart_uv_bbox(chart, minv, maxv);
+ median = p_smooth_median_edge_length(chart)*0.10f;
+
+ if (median == 0.0)
+ return;
+
+ invmedian = 1.0/median;
+
+ /* compute edge distortion */
+ distortion = 0.0;
+ avglen2d = avglen3d = 0.0;
+
+ for (e=chart->edges; e; e=e->nextlink) {
+ avglen2d += p_edge_uv_length(e);
+ avglen3d += p_edge_length(e);
+ }
+
+ avglen2d /= nedges;
+ avglen3d /= nedges;
+
+ for (v=chart->verts; v; v=v->nextlink) {
+ v->u.distortion = 0.0;
+ nwheel = 0;
+
+ e = v->edge;
+ do {
+ v->u.distortion += p_smooth_distortion(e, avglen2d, avglen3d);
+ nwheel++;
+
+ e = e->next->next->pair;
+ } while(e && (e != v->edge));
+
+ v->u.distortion /= nwheel;
+ }
+
+ /* need to do excessive grid size checking still */
+ center[0] = 0.5f*(minv[0] + maxv[0]);
+ center[1] = 0.5f*(minv[1] + maxv[1]);
+
+ dx = 0.5f*(maxv[0] - minv[0]);
+ dy = 0.5f*(maxv[1] - minv[1]);
+
+ padding = 0.15f;
+ dx += padding*dx + 2.0f*median;
+ dy += padding*dy + 2.0f*median;
+
+ gridx = (int)(dx*invmedian);
+ gridy = (int)(dy*invmedian);
+
+ minv[0] = center[0] - median*gridx;
+ minv[1] = center[1] - median*gridy;
+ maxv[0] = center[0] + median*gridx;
+ maxv[1] = center[1] + median*gridy;
+
+ /* create grid */
+ gridx = gridx*2 + 1;
+ gridy = gridy*2 + 1;
+
+ if ((gridx <= 2) || (gridy <= 2))
+ return;
+
+ edgesx = gridx-1;
+ edgesy = gridy-1;
+ nsize = gridx*gridy;
+ esize = edgesx*edgesy;
+
+ nodes = MEM_mallocN(sizeof(float)*nsize, "PSmoothNodes");
+ nodesx = MEM_mallocN(sizeof(float)*nsize, "PSmoothNodesX");
+ nodesy = MEM_mallocN(sizeof(float)*nsize, "PSmoothNodesY");
+ oldnodesx = MEM_mallocN(sizeof(float)*nsize, "PSmoothOldNodesX");
+ oldnodesy = MEM_mallocN(sizeof(float)*nsize, "PSmoothOldNodesY");
+ hedges = MEM_mallocN(sizeof(float)*esize, "PSmoothHEdges");
+ vedges = MEM_mallocN(sizeof(float)*esize, "PSmoothVEdges");
+
+ if (!nodes || !nodesx || !nodesy || !oldnodesx || !oldnodesy || !hedges || !vedges) {
+ if (nodes) MEM_freeN(nodes);
+ if (nodesx) MEM_freeN(nodesx);
+ if (nodesy) MEM_freeN(nodesy);
+ if (oldnodesx) MEM_freeN(oldnodesx);
+ if (oldnodesy) MEM_freeN(oldnodesy);
+ if (hedges) MEM_freeN(hedges);
+ if (vedges) MEM_freeN(vedges);
+
+ error("Not enough memory for area smoothing grid.");
+ return;
+ }
+
+ for (x = 0; x < gridx; x++) {
+ for (y = 0; y < gridy; y++) {
+ i = x + y*gridx;
+
+ nodesx[i] = minv[0] + median*x;
+ nodesy[i] = minv[1] + median*y;
+
+ nodes[i] = 1.0f;
+ }
+ }
+
+ /* embed in grid */
+ for (f=chart->faces; f; f=f->nextlink) {
+ PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next;
+ float fmin[2], fmax[2];
+ int bx1, by1, bx2, by2;
+
+ INIT_MINMAX2(fmin, fmax);
+
+ DO_MINMAX2(e1->vert->uv, fmin, fmax);
+ DO_MINMAX2(e2->vert->uv, fmin, fmax);
+ DO_MINMAX2(e3->vert->uv, fmin, fmax);
+
+ bx1 = (int)((fmin[0] - minv[0])*invmedian);
+ by1 = (int)((fmin[1] - minv[1])*invmedian);
+ bx2 = (int)((fmax[0] - minv[0])*invmedian + 2);
+ by2 = (int)((fmax[1] - minv[1])*invmedian + 2);
+
+ for (x = bx1; x < bx2; x++) {
+ for (y = by1; y < by2; y++) {
+ float p[2], b[3];
+
+ i = x + y*gridx;
+
+ p[0] = nodesx[i];
+ p[1] = nodesy[i];
+
+ p_barycentric_2d(e1->vert->uv, e2->vert->uv, e3->vert->uv, p, b);
+
+ if ((b[0] > 0.0) && (b[1] > 0.0) && (b[2] > 0.0)) {
+ nodes[i] = e1->vert->u.distortion*b[0];
+ nodes[i] += e2->vert->u.distortion*b[1];
+ nodes[i] += e3->vert->u.distortion*b[2];
+ }
+ }
+ }
+ }
+
+ /* smooth the grid */
+ maxiter = 10;
+ totiter = 0;
+ climit = 0.00001f*nsize;
+
+ for (it = 0; it < maxiter; it++) {
+ moved = 0.0f;
+
+ for (x = 0; x < edgesx; x++) {
+ for (y = 0; y < edgesy; y++) {
+ i = x + y*gridx;
+ j = x + y*edgesx;
+
+ hedges[j] = (nodes[i] + nodes[i+1])*0.5f;
+ vedges[j] = (nodes[i] + nodes[i+gridx])*0.5f;
+
+ /* we do *inverse* mapping */
+ hedges[j] = 1.0f/hedges[j];
+ vedges[j] = 1.0f/vedges[j];
+ }
+ }
+
+ maxiter2 = 50;
+ dlimit = 0.0001f;
+
+ for (it2 = 0; it2 < maxiter2; it2++) {
+ d = 0.0f;
+ totiter += 1;
+
+ memcpy(oldnodesx, nodesx, sizeof(float)*nsize);
+ memcpy(oldnodesy, nodesy, sizeof(float)*nsize);
+
+ for (x=1; x < gridx-1; x++) {
+ for (y=1; y < gridy-1; y++) {
+ float p[2], oldp[2], sum1, sum2, diff[2], length;
+
+ i = x + gridx*y;
+ j = x + edgesx*y;
+
+ oldp[0] = oldnodesx[i];
+ oldp[1] = oldnodesy[i];
+
+ sum1 = hedges[j-1]*oldnodesx[i-1];
+ sum1 += hedges[j]*oldnodesx[i+1];
+ sum1 += vedges[j-edgesx]*oldnodesx[i-gridx];
+ sum1 += vedges[j]*oldnodesx[i+gridx];
+
+ sum2 = hedges[j-1];
+ sum2 += hedges[j];
+ sum2 += vedges[j-edgesx];
+ sum2 += vedges[j];
+
+ nodesx[i] = sum1/sum2;
+
+ sum1 = hedges[j-1]*oldnodesy[i-1];
+ sum1 += hedges[j]*oldnodesy[i+1];
+ sum1 += vedges[j-edgesx]*oldnodesy[i-gridx];
+ sum1 += vedges[j]*oldnodesy[i+gridx];
+
+ nodesy[i] = sum1/sum2;
+
+ p[0] = nodesx[i];
+ p[1] = nodesy[i];
+
+ diff[0] = p[0] - oldp[0];
+ diff[1] = p[1] - oldp[1];
+
+ length = sqrt(diff[0]*diff[0] + diff[1]*diff[1]);
+ d = MAX2(d, length);
+ moved += length;
+ }
+ }
+
+ if (d < dlimit)
+ break;
+ }
+
+ if (moved < climit)
+ break;
+ }
+
+ MEM_freeN(oldnodesx);
+ MEM_freeN(oldnodesy);
+ MEM_freeN(hedges);
+ MEM_freeN(vedges);
+
+ /* create bsp */
+ t = triangles = MEM_mallocN(sizeof(SmoothTriangle)*esize*2, "PSmoothTris");
+ trip = tri = MEM_mallocN(sizeof(SmoothTriangle*)*esize*2, "PSmoothTriP");
+
+ if (!triangles || !tri) {
+ MEM_freeN(nodes);
+ MEM_freeN(nodesx);
+ MEM_freeN(nodesy);
+
+ if (triangles) MEM_freeN(triangles);
+ if (tri) MEM_freeN(tri);
+
+ error("Not enough memory for area smoothing grid.");
+ return;
+ }
+
+ for (x = 0; x < edgesx; x++) {
+ for (y = 0; y < edgesy; y++) {
+ i = x + y*gridx;
+
+ t->co1[0] = nodesx[i];
+ t->co1[1] = nodesy[i];
+
+ t->co2[0] = nodesx[i+1];
+ t->co2[1] = nodesy[i+1];
+
+ t->co3[0] = nodesx[i+gridx];
+ t->co3[1] = nodesy[i+gridx];
+
+ t->oco1[0] = minv[0] + x*median;
+ t->oco1[1] = minv[1] + y*median;
+
+ t->oco2[0] = minv[0] + (x+1)*median;
+ t->oco2[1] = minv[1] + y*median;
+
+ t->oco3[0] = minv[0] + x*median;
+ t->oco3[1] = minv[1] + (y+1)*median;
+
+ t2 = t+1;
+
+ t2->co1[0] = nodesx[i+gridx+1];
+ t2->co1[1] = nodesy[i+gridx+1];
+
+ t2->oco1[0] = minv[0] + (x+1)*median;
+ t2->oco1[1] = minv[1] + (y+1)*median;
+
+ t2->co2[0] = t->co2[0]; t2->co2[1] = t->co2[1];
+ t2->oco2[0] = t->oco2[0]; t2->oco2[1] = t->oco2[1];
+
+ t2->co3[0] = t->co3[0]; t2->co3[1] = t->co3[1];
+ t2->oco3[0] = t->oco3[0]; t2->oco3[1] = t->oco3[1];
+
+ *trip = t; trip++; t++;
+ *trip = t; trip++; t++;
+ }
+ }
+
+ MEM_freeN(nodes);
+ MEM_freeN(nodesx);
+ MEM_freeN(nodesy);
+
+ arena = BLI_memarena_new(1<<16);
+ root = p_node_new(arena, tri, esize*2, minv, maxv, 0);
+
+ for (v=chart->verts; v; v=v->nextlink)
+ if (!p_node_intersect(root, v->uv))
+ param_warning("area smoothing error: couldn't find mapping triangle\n");
+
+ p_node_delete(root);
+ BLI_memarena_free(arena);
+
+ MEM_freeN(triangles);
+}
+
+/* Exported */
+
+ParamHandle *param_construct_begin()
+{
+ PHandle *handle = MEM_callocN(sizeof*handle, "PHandle");
+ handle->construction_chart = p_chart_new(handle);
+ handle->state = PHANDLE_STATE_ALLOCATED;
+ handle->arena = BLI_memarena_new((1<<16));
+
+ handle->hash_verts = phash_new((PHashLink**)&handle->construction_chart->verts, 1);
+ handle->hash_edges = phash_new((PHashLink**)&handle->construction_chart->edges, 1);
+ handle->hash_faces = phash_new((PHashLink**)&handle->construction_chart->faces, 1);
+
+ return (ParamHandle*)handle;
+}
+
+void param_delete(ParamHandle *handle)
+{
+ PHandle *phandle = (PHandle*)handle;
+ int i;
+
+ param_assert((phandle->state == PHANDLE_STATE_ALLOCATED) ||
+ (phandle->state == PHANDLE_STATE_CONSTRUCTED));
+
+ for (i = 0; i < phandle->ncharts; i++)
+ p_chart_delete(phandle->charts[i]);
+
+ if (phandle->charts)
+ MEM_freeN(phandle->charts);
+
+ if (phandle->construction_chart) {
+ p_chart_delete(phandle->construction_chart);
+
+ phash_delete(phandle->hash_verts);
+ phash_delete(phandle->hash_edges);
+ phash_delete(phandle->hash_faces);
+ }
+
+ BLI_memarena_free(phandle->arena);
+ MEM_freeN(phandle);
+}
+
+void param_face_add(ParamHandle *handle, ParamKey key, int nverts,
+ ParamKey *vkeys, float **co, float **uv,
+ ParamBool *pin, ParamBool *select)
+{
+ PHandle *phandle = (PHandle*)handle;
+
+ param_assert(phash_lookup(phandle->hash_faces, key) == NULL);
+ param_assert(phandle->state == PHANDLE_STATE_ALLOCATED);
+ param_assert((nverts == 3) || (nverts == 4));
+
+ if (nverts == 4) {
+ if (p_quad_split_direction(phandle, co, vkeys)) {
+ p_face_add_construct(phandle, key, vkeys, co, uv, 0, 1, 2, pin, select);
+ p_face_add_construct(phandle, key, vkeys, co, uv, 0, 2, 3, pin, select);
+ }
+ else {
+ p_face_add_construct(phandle, key, vkeys, co, uv, 0, 1, 3, pin, select);
+ p_face_add_construct(phandle, key, vkeys, co, uv, 1, 2, 3, pin, select);
+ }
+ }
+ else
+ p_face_add_construct(phandle, key, vkeys, co, uv, 0, 1, 2, pin, select);
+}
+
+void param_edge_set_seam(ParamHandle *handle, ParamKey *vkeys)
+{
+ PHandle *phandle = (PHandle*)handle;
+ PEdge *e;
+
+ param_assert(phandle->state == PHANDLE_STATE_ALLOCATED);
- /* compute derivatives */
- VecCopyf(Ps, v1->co);
- VecMulf(Ps, (v2->uv[1] - v3->uv[1]));
+ e = p_edge_lookup(phandle, vkeys);
+ if (e)
+ e->flag |= PEDGE_SEAM;
+}
- VecCopyf(tmp, v2->co);
- VecMulf(tmp, (v3->uv[1] - v1->uv[1]));
- VecAddf(Ps, Ps, tmp);
+void param_construct_end(ParamHandle *handle, ParamBool fill, ParamBool impl)
+{
+ PHandle *phandle = (PHandle*)handle;
+ PChart *chart = phandle->construction_chart;
+ int i, j, nboundaries = 0;
+ PEdge *outer;
- VecCopyf(tmp, v3->co);
- VecMulf(tmp, (v1->uv[1] - v2->uv[1]));
- VecAddf(Ps, Ps, tmp);
+ param_assert(phandle->state == PHANDLE_STATE_ALLOCATED);
- VecMulf(Ps, w);
+ phandle->ncharts = p_connect_pairs(phandle, impl);
+ phandle->charts = p_split_charts(phandle, chart, phandle->ncharts);
- VecCopyf(Pt, v1->co);
- VecMulf(Pt, (v3->uv[0] - v2->uv[0]));
+ p_chart_delete(phandle->construction_chart);
+ phandle->construction_chart = NULL;
- VecCopyf(tmp, v2->co);
- VecMulf(tmp, (v1->uv[0] - v3->uv[0]));
- VecAddf(Pt, Pt, tmp);
+ phash_delete(phandle->hash_verts);
+ phash_delete(phandle->hash_edges);
+ phash_delete(phandle->hash_faces);
+ phandle->hash_verts = phandle->hash_edges = phandle->hash_faces = NULL;
- VecCopyf(tmp, v3->co);
- VecMulf(tmp, (v2->uv[0] - v1->uv[0]));
- VecAddf(Pt, Pt, tmp);
+ for (i = j = 0; i < phandle->ncharts; i++) {
+ PVert *v;
+ PChart *chart = phandle->charts[i];
- VecMulf(Pt, w);
+ p_chart_boundaries(chart, &nboundaries, &outer);
- /* Sander Tensor */
- a= Inpf(Ps, Ps);
- c= Inpf(Pt, Pt);
+ if (nboundaries == 0) {
+ p_chart_delete(chart);
+ continue;
+ }
- T = sqrt(0.5f*(a + c)*f->u.area3d);
+ phandle->charts[j] = chart;
+ j++;
- return T;
-}
+ if (fill && (nboundaries > 1))
+ p_chart_fill_boundaries(chart, outer);
-static float p_stretch_compute_vertex(PVert *v)
-{
- PEdge *e = v->edge;
- float sum = 0.0f;
+ for (v=chart->verts; v; v=v->nextlink)
+ p_vert_load_pin_select_uvs(v);
+ }
- do {
- sum += p_face_stretch(e->face);
- e = p_wheel_edge_next(e);
- } while (e && e != (v->edge));
+ phandle->ncharts = j;
- return sum;
+ phandle->state = PHANDLE_STATE_CONSTRUCTED;
}
-static void p_chart_stretch_minimize(PChart *chart, RNG *rng)
+void param_lscm_begin(ParamHandle *handle, ParamBool live, ParamBool abf)
{
- PVert *v;
- PEdge *e;
- int j, nedges;
- float orig_stretch, low, stretch_low, high, stretch_high, mid, stretch;
- float orig_uv[2], dir[2], random_angle, trusted_radius;
-
- for(v=(PVert*)chart->verts->first; v; v=v->link.next) {
- if((v->flag & PVERT_PIN) || !(v->flag & PVERT_SELECT))
- continue;
+ PHandle *phandle = (PHandle*)handle;
+ PFace *f;
+ int i;
- orig_stretch = p_stretch_compute_vertex(v);
- orig_uv[0] = v->uv[0];
- orig_uv[1] = v->uv[1];
+ param_assert(phandle->state == PHANDLE_STATE_CONSTRUCTED);
+ phandle->state = PHANDLE_STATE_LSCM;
- /* move vertex in a random direction */
- trusted_radius = 0.0f;
- nedges = 0;
- e = v->edge;
+ for (i = 0; i < phandle->ncharts; i++) {
+ for (f=phandle->charts[i]->faces; f; f=f->nextlink)
+ p_face_backup_uvs(f);
+ p_chart_lscm_begin(phandle->charts[i], live, abf);
+ }
+}
- do {
- trusted_radius += p_edge_uv_length(e);
- nedges++;
+void param_lscm_solve(ParamHandle *handle)
+{
+ PHandle *phandle = (PHandle*)handle;
+ PChart *chart;
+ int i;
+ PBool result;
- e = p_wheel_edge_next(e);
- } while (e && e != (v->edge));
+ param_assert(phandle->state == PHANDLE_STATE_LSCM);
- trusted_radius /= 2 * nedges;
+ for (i = 0; i < phandle->ncharts; i++) {
+ chart = phandle->charts[i];
- random_angle = rng_getFloat(rng) * 2.0 * M_PI;
- dir[0] = trusted_radius * cos(random_angle);
- dir[1] = trusted_radius * sin(random_angle);
+ if (chart->u.lscm.context) {
+ result = p_chart_lscm_solve(chart);
- /* calculate old and new stretch */
- low = 0;
- stretch_low = orig_stretch;
+ if (result && !(chart->flag & PCHART_NOPACK))
+ p_chart_rotate_minimum_area(chart);
- Vec2Addf(v->uv, orig_uv, dir);
- high = 1;
- stretch = stretch_high = p_stretch_compute_vertex(v);
+ if (!result || (chart->u.lscm.pin1))
+ p_chart_lscm_end(chart);
+ }
+ }
+}
- /* binary search for lowest stretch position */
- for (j = 0; j < P_STRETCH_ITER; j++) {
- mid = 0.5 * (low + high);
- v->uv[0]= orig_uv[0] + mid*dir[0];
- v->uv[1]= orig_uv[1] + mid*dir[1];
- stretch = p_stretch_compute_vertex(v);
+void param_lscm_end(ParamHandle *handle)
+{
+ PHandle *phandle = (PHandle*)handle;
+ int i;
- if (stretch_low < stretch_high) {
- high = mid;
- stretch_high = stretch;
- }
- else {
- low = mid;
- stretch_low = stretch;
- }
- }
+ param_assert(phandle->state == PHANDLE_STATE_LSCM);
- /* no luck, stretch has increased, reset to old values */
- if(stretch >= orig_stretch)
- Vec2Copyf(v->uv, orig_uv);
+ for (i = 0; i < phandle->ncharts; i++) {
+ p_chart_lscm_end(phandle->charts[i]);
+#if 0
+ p_chart_complexify(phandle->charts[i]);
+#endif
}
+
+ phandle->state = PHANDLE_STATE_CONSTRUCTED;
}
void param_stretch_begin(ParamHandle *handle)
for (i = 0; i < phandle->ncharts; i++) {
chart = phandle->charts[i];
- for (v=(PVert*)chart->verts->first; v; v=v->link.next)
- p_vert_load_select_uvs(v);
+ for (v=chart->verts; v; v=v->nextlink)
+ v->flag &= ~PVERT_PIN; /* don't use user-defined pins */
p_stretch_pin_boundary(chart);
- for (f=(PFace*)chart->faces->first; f; f=f->link.next) {
+ for (f=chart->faces; f; f=f->nextlink) {
p_face_backup_uvs(f);
f->u.area3d = p_face_area(f);
}
phandle->rng = NULL;
}
-/* Flushing */
-
-void param_flush(ParamHandle *handle)
+void param_smooth_area(ParamHandle *handle)
{
PHandle *phandle = (PHandle*)handle;
- PChart *chart;
int i;
- for (i = 0; i < phandle->ncharts; i++) {
- chart = phandle->charts[i];
-
- if ((phandle->state == PHANDLE_STATE_LSCM) && !chart->u.lscm.context)
- continue;
-
- if (phandle->blend == 0.0f)
- p_flush_uvs(chart);
- else
- p_flush_uvs_blend(chart, phandle->blend);
- }
-}
-
-void param_flush_restore(ParamHandle *handle)
-{
- PHandle *phandle = (PHandle*)handle;
- PChart *chart;
- PFace *f;
- int i;
+ param_assert(phandle->state == PHANDLE_STATE_CONSTRUCTED);
for (i = 0; i < phandle->ncharts; i++) {
- chart = phandle->charts[i];
-
- for (f=(PFace*)chart->faces->first; f; f=f->link.next)
- p_face_restore_uvs(f);
- }
-}
-
-/* Packing */
-
-static int compare_chart_area(const void *a, const void *b)
-{
- PChart *ca = *((PChart**)a);
- PChart *cb = *((PChart**)b);
-
- if (ca->u.pack.area > cb->u.pack.area)
- return -1;
- else if (ca->u.pack.area == cb->u.pack.area)
- return 0;
- else
- return 1;
-}
-
-static PBool p_pack_try(PHandle *handle, float side)
-{
- PChart *chart;
- float packx, packy, rowh, groupw, w, h;
- int i;
-
- packx= packy= 0.0;
- rowh= 0.0;
- groupw= 1.0/sqrt(handle->ncharts);
-
- for (i = 0; i < handle->ncharts; i++) {
- chart = handle->charts[i];
-
- if (chart->flag & PCHART_NOPACK)
- continue;
-
- w = chart->u.pack.size[0];
- h = chart->u.pack.size[1];
-
- if(w <= (side-packx)) {
- chart->u.pack.trans[0] = packx;
- chart->u.pack.trans[1] = packy;
-
- packx += w;
- rowh= MAX2(rowh, h);
- }
- else {
- packy += rowh;
- packx = w;
- rowh = h;
+ PChart *chart = phandle->charts[i];
+ PVert *v;
- chart->u.pack.trans[0] = 0.0;
- chart->u.pack.trans[1] = packy;
- }
+ for (v=chart->verts; v; v=v->nextlink)
+ v->flag &= ~PVERT_PIN;
- if (packy+rowh > side)
- return P_FALSE;
+ p_smooth(chart);
}
-
- return P_TRUE;
}
-
-#define PACK_SEARCH_DEPTH 15
-
+
void param_pack(ParamHandle *handle)
{
- PHandle *phandle = (PHandle*)handle;
+ /* box packing variables */
+ boxPack *boxarray, *box;
+ float tot_width, tot_height, scale;
+
PChart *chart;
- float uv_area, area, trans[2], minside, maxside, totarea, side;
- int i;
-
- /* very simple rectangle packing */
-
+ int i, unpacked=0;
+ float trans[2];
+
+ PHandle *phandle = (PHandle*)handle;
+
+
if (phandle->ncharts == 0)
return;
-
- totarea = 0.0f;
- maxside = 0.0f;
-
+
+ /* we may not use all these boxes */
+ boxarray = MEM_mallocN( phandle->ncharts*sizeof(boxPack), "boxPack box");
+
for (i = 0; i < phandle->ncharts; i++) {
chart = phandle->charts[i];
-
+
+
if (chart->flag & PCHART_NOPACK) {
- chart->u.pack.area = 0.0f;
+ unpacked++;
continue;
}
-
- p_chart_area(chart, &uv_area, &area);
+
+ box = boxarray+(i-unpacked);
+
p_chart_uv_bbox(chart, trans, chart->u.pack.size);
-
- /* translate to origin and make area equal to 3d area */
- chart->u.pack.rescale = (uv_area > 0.0f)? sqrt(area)/sqrt(uv_area): 0.0f;
- chart->u.pack.area = area;
- totarea += area;
-
+
trans[0] = -trans[0];
trans[1] = -trans[1];
+
p_chart_uv_translate(chart, trans);
- p_chart_uv_scale(chart, chart->u.pack.rescale);
-
- /* compute new dimensions for packing */
- chart->u.pack.size[0] += trans[0];
- chart->u.pack.size[1] += trans[1];
- chart->u.pack.size[0] *= chart->u.pack.rescale;
- chart->u.pack.size[1] *= chart->u.pack.rescale;
-
- maxside = MAX3(maxside, chart->u.pack.size[0], chart->u.pack.size[1]);
+
+ box->w = chart->u.pack.size[0] + trans[0];
+ box->h = chart->u.pack.size[1] + trans[1];
+ box->index = i; /* warning this index skips PCHART_NOPACK boxes */
+ }
+
+ boxPack2D(boxarray, phandle->ncharts-unpacked, &tot_width, &tot_height);
+
+ if (tot_height>tot_width)
+ scale = 1.0/tot_height;
+ else
+ scale = 1.0/tot_width;
+
+ for (i = 0; i < phandle->ncharts-unpacked; i++) {
+ box = boxarray+i;
+ trans[0] = box->x;
+ trans[1] = box->y;
+
+ chart = phandle->charts[box->index];
+ p_chart_uv_translate(chart, trans);
+ p_chart_uv_scale(chart, scale);
}
+ MEM_freeN(boxarray);
+}
- /* sort by chart area, largest first */
- qsort(phandle->charts, phandle->ncharts, sizeof(PChart*), compare_chart_area);
+void param_flush(ParamHandle *handle)
+{
+ PHandle *phandle = (PHandle*)handle;
+ PChart *chart;
+ int i;
- /* binary search over pack region size */
- minside = MAX2(sqrt(totarea), maxside);
- maxside = (((int)sqrt(phandle->ncharts-1))+1)*maxside;
+ for (i = 0; i < phandle->ncharts; i++) {
+ chart = phandle->charts[i];
- if (minside < maxside) { /* should always be true */
+ if ((phandle->state == PHANDLE_STATE_LSCM) && !chart->u.lscm.context)
+ continue;
- for (i = 0; i < PACK_SEARCH_DEPTH; i++) {
- if (p_pack_try(phandle, (minside+maxside)*0.5f + 1e-5))
- maxside = (minside+maxside)*0.5f;
- else
- minside = (minside+maxside)*0.5f;
- }
+ if (phandle->blend == 0.0f)
+ p_flush_uvs(chart);
+ else
+ p_flush_uvs_blend(chart, phandle->blend);
}
+}
- /* do the actual packing */
- side = maxside + 1e-5;
- if (!p_pack_try(phandle, side))
- param_warning("packing failed.\n");
+void param_flush_restore(ParamHandle *handle)
+{
+ PHandle *phandle = (PHandle*)handle;
+ PChart *chart;
+ PFace *f;
+ int i;
for (i = 0; i < phandle->ncharts; i++) {
chart = phandle->charts[i];
- if (chart->flag & PCHART_NOPACK)
- continue;
-
- p_chart_uv_scale(chart, 1.0f/side);
- trans[0] = chart->u.pack.trans[0]/side;
- trans[1] = chart->u.pack.trans[1]/side;
- p_chart_uv_translate(chart, trans);
+ for (f=chart->faces; f; f=f->nextlink)
+ p_face_restore_uvs(f);
}
}