PyObject *listObject = NULL, *n, *q;
int size, i;
float quat[4], scalar;
- double norm = 0.0f, angle = 0.0f;
+ double angle = 0.0f;
size = PyTuple_GET_SIZE(args);
if (size == 1 || size == 2) { //seq?
}
scalar = PyFloat_AsDouble(q);
+ Py_DECREF(q);
+
if (scalar==-1 && PyErr_Occurred()) {
- Py_DECREF(q);
PyErr_SetString(PyExc_TypeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
return NULL;
}
-
quat[i] = scalar;
- Py_DECREF(q);
- }
- if(size == 3){ //calculate the quat based on axis/angle
- norm = sqrt(quat[0] * quat[0] + quat[1] * quat[1] + quat[2] * quat[2]);
- quat[0] /= (float)norm;
- quat[1] /= (float)norm;
- quat[2] /= (float)norm;
-
- angle = angle * (Py_PI / 180);
- quat[3] =(float) (sin(angle/ 2.0f)) * quat[2];
- quat[2] =(float) (sin(angle/ 2.0f)) * quat[1];
- quat[1] =(float) (sin(angle/ 2.0f)) * quat[0];
- quat[0] =(float) (cos(angle/ 2.0f));
}
+ if(size == 3) //calculate the quat based on axis/angle
+ AxisAngleToQuat(quat, quat, angle * (Py_PI / 180)); // TODO - 2.5 use radians, note using quat for src and target is ok here
+
+
return newQuaternionObject(quat, Py_NEW);
}
if(!PyArg_ParseTuple(args, "|O!:toEuler", &euler_Type, &eul_compat))
return NULL;
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
+
if(eul_compat) {
float mat[3][3], eul_compatf[3];
+ if(!BaseMath_ReadCallback(eul_compat))
+ return NULL;
+
for(x = 0; x < 3; x++) {
eul_compatf[x] = eul_compat->eul[x] * ((float)Py_PI / 180);
}
static PyObject *Quaternion_ToMatrix(QuaternionObject * self)
{
float mat[9] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f};
- QuatToMat3(self->quat, (float (*)[3]) mat);
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
+
+ QuatToMat3(self->quat, (float (*)[3]) mat);
return newMatrixObject(mat, 3, 3, Py_NEW);
}
return NULL;
}
+ if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(value))
+ return NULL;
+
QuatMul(quat, self->quat, value->quat);
return newQuaternionObject(quat, Py_NEW);
}
//return the dot quat
static PyObject *Quaternion_Dot(QuaternionObject * self, QuaternionObject * value)
{
- int x;
- double dot = 0.0;
-
if (!QuaternionObject_Check(value)) {
PyErr_SetString( PyExc_TypeError, "quat.dot(value): expected a quaternion argument" );
return NULL;
}
-
- for(x = 0; x < 4; x++) {
- dot += self->quat[x] * value->quat[x];
- }
- return PyFloat_FromDouble(dot);
+
+ if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(value))
+ return NULL;
+
+ return PyFloat_FromDouble(QuatDot(self->quat, value->quat));
}
//----------------------------Quaternion.normalize()----------------
//normalize the axis of rotation of [theta,vector]
static PyObject *Quaternion_Normalize(QuaternionObject * self)
{
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
+
NormalQuat(self->quat);
+
+ BaseMath_WriteCallback(self);
Py_INCREF(self);
return (PyObject*)self;
}
//invert the quat
static PyObject *Quaternion_Inverse(QuaternionObject * self)
{
- double mag = 0.0f;
- int x;
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
- for(x = 1; x < 4; x++) {
- self->quat[x] = -self->quat[x];
- }
- for(x = 0; x < 4; x++) {
- mag += (self->quat[x] * self->quat[x]);
- }
- mag = sqrt(mag);
- for(x = 0; x < 4; x++) {
- self->quat[x] /= (float)(mag * mag);
- }
+ QuatInv(self->quat);
+ BaseMath_WriteCallback(self);
Py_INCREF(self);
return (PyObject*)self;
}
//generate the identity quaternion
static PyObject *Quaternion_Identity(QuaternionObject * self)
{
- self->quat[0] = 1.0;
- self->quat[1] = 0.0;
- self->quat[2] = 0.0;
- self->quat[3] = 0.0;
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
+
+ QuatOne(self->quat);
+ BaseMath_WriteCallback(self);
Py_INCREF(self);
return (PyObject*)self;
}
//negate the quat
static PyObject *Quaternion_Negate(QuaternionObject * self)
{
- int x;
- for(x = 0; x < 4; x++) {
- self->quat[x] = -self->quat[x];
- }
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
+
+ QuatMulf(self->quat, -1.0f);
+
+ BaseMath_WriteCallback(self);
Py_INCREF(self);
return (PyObject*)self;
}
//negate the vector part
static PyObject *Quaternion_Conjugate(QuaternionObject * self)
{
- int x;
- for(x = 1; x < 4; x++) {
- self->quat[x] = -self->quat[x];
- }
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
+
+ QuatConj(self->quat);
+
+ BaseMath_WriteCallback(self);
Py_INCREF(self);
return (PyObject*)self;
}
//return a copy of the quat
static PyObject *Quaternion_copy(QuaternionObject * self)
{
- return newQuaternionObject(self->quat, Py_NEW);
-}
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
-//----------------------------dealloc()(internal) ------------------
-//free the py_object
-static void Quaternion_dealloc(QuaternionObject * self)
-{
- //only free py_data
- if(self->data.py_data){
- PyMem_Free(self->data.py_data);
- }
- PyObject_DEL(self);
+ return newQuaternionObject(self->quat, Py_NEW);
}
//----------------------------print object (internal)--------------
static PyObject *Quaternion_repr(QuaternionObject * self)
{
char str[64];
+
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
+
sprintf(str, "[%.6f, %.6f, %.6f, %.6f](quaternion)", self->quat[0], self->quat[1], self->quat[2], self->quat[3]);
return PyUnicode_FromString(str);
}
QuaternionObject *quatA = NULL, *quatB = NULL;
int result = 0;
- if (!QuaternionObject_Check(objectA) || !QuaternionObject_Check(objectB)){
+ if(QuaternionObject_Check(objectA)) {
+ quatA = (QuaternionObject*)objectA;
+ if(!BaseMath_ReadCallback(quatA))
+ return NULL;
+ }
+ if(QuaternionObject_Check(objectB)) {
+ quatB = (QuaternionObject*)objectB;
+ if(!BaseMath_ReadCallback(quatB))
+ return NULL;
+ }
+
+ if (!quatA || !quatB){
if (comparison_type == Py_NE){
Py_RETURN_TRUE;
}else{
Py_RETURN_FALSE;
}
}
- quatA = (QuaternionObject*)objectA;
- quatB = (QuaternionObject*)objectB;
switch (comparison_type){
case Py_EQ:
//sequence accessor (get)
static PyObject *Quaternion_item(QuaternionObject * self, int i)
{
+ if(i<0) i= 4-i;
+
if(i < 0 || i >= 4) {
PyErr_SetString(PyExc_IndexError, "quaternion[attribute]: array index out of range\n");
return NULL;
}
+
+ if(!BaseMath_ReadIndexCallback(self, i))
+ return NULL;
+
return PyFloat_FromDouble(self->quat[i]);
}
//sequence accessor (set)
static int Quaternion_ass_item(QuaternionObject * self, int i, PyObject * ob)
{
- PyObject *f = NULL;
-
- f = PyNumber_Float(ob);
- if(f == NULL) { // parsed item not a number
- PyErr_SetString(PyExc_TypeError, "quaternion[attribute] = x: argument not a number\n");
+ float scalar= (float)PyFloat_AsDouble(ob);
+ if(scalar==-1.0f && PyErr_Occurred()) { /* parsed item not a number */
+ PyErr_SetString(PyExc_TypeError, "quaternion[index] = x: index argument not a number\n");
return -1;
}
+ if(i<0) i= 4-i;
+
if(i < 0 || i >= 4){
- Py_DECREF(f);
PyErr_SetString(PyExc_IndexError, "quaternion[attribute] = x: array assignment index out of range\n");
return -1;
}
- self->quat[i] = (float)PyFloat_AS_DOUBLE(f);
- Py_DECREF(f);
+ self->quat[i] = scalar;
+
+ if(!BaseMath_WriteIndexCallback(self, i))
+ return -1;
+
return 0;
}
//----------------------------object[z:y]------------------------
PyObject *list = NULL;
int count;
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
+
CLAMP(begin, 0, 4);
if (end<0) end= 5+end;
CLAMP(end, 0, 4);
}
//----------------------------object[z:y]------------------------
//sequence slice (set)
-static int Quaternion_ass_slice(QuaternionObject * self, int begin, int end,
- PyObject * seq)
+static int Quaternion_ass_slice(QuaternionObject * self, int begin, int end, PyObject * seq)
{
int i, y, size = 0;
float quat[4];
- PyObject *q, *f;
+ PyObject *q;
+
+ if(!BaseMath_ReadCallback(self))
+ return -1;
CLAMP(begin, 0, 4);
if (end<0) end= 5+end;
return -1;
}
- f = PyNumber_Float(q);
- if(f == NULL) { // parsed item not a number
- Py_DECREF(q);
+ quat[i]= (float)PyFloat_AsDouble(q);
+ Py_DECREF(q);
+
+ if(quat[i]==-1.0f && PyErr_Occurred()) { /* parsed item not a number */
PyErr_SetString(PyExc_TypeError, "quaternion[begin:end] = []: sequence argument not a number\n");
return -1;
}
-
- quat[i] = (float)PyFloat_AS_DOUBLE(f);
- Py_DECREF(f);
- Py_DECREF(q);
}
//parsed well - now set in vector
- for(y = 0; y < size; y++){
+ for(y = 0; y < size; y++)
self->quat[begin + y] = quat[y];
- }
+
+ BaseMath_WriteCallback(self);
return 0;
}
//------------------------NUMERIC PROTOCOLS----------------------
//addition
static PyObject *Quaternion_add(PyObject * q1, PyObject * q2)
{
- int x;
float quat[4];
QuaternionObject *quat1 = NULL, *quat2 = NULL;
PyErr_SetString(PyExc_AttributeError, "Quaternion addition: arguments not valid for this operation....\n");
return NULL;
}
-
quat1 = (QuaternionObject*)q1;
quat2 = (QuaternionObject*)q2;
- for(x = 0; x < 4; x++) {
- quat[x] = quat1->quat[x] + quat2->quat[x];
- }
+ if(!BaseMath_ReadCallback(quat1) || !BaseMath_ReadCallback(quat2))
+ return NULL;
+ QuatAdd(quat, quat1->quat, quat2->quat, 1.0f);
return newQuaternionObject(quat, Py_NEW);
}
//------------------------obj - obj------------------------------
quat1 = (QuaternionObject*)q1;
quat2 = (QuaternionObject*)q2;
+ if(!BaseMath_ReadCallback(quat1) || !BaseMath_ReadCallback(quat2))
+ return NULL;
+
for(x = 0; x < 4; x++) {
quat[x] = quat1->quat[x] - quat2->quat[x];
}
//mulplication
static PyObject *Quaternion_mul(PyObject * q1, PyObject * q2)
{
- int x;
float quat[4], scalar;
- double dot = 0.0f;
QuaternionObject *quat1 = NULL, *quat2 = NULL;
VectorObject *vec = NULL;
- quat1 = (QuaternionObject*)q1;
- quat2 = (QuaternionObject*)q2;
+ if(QuaternionObject_Check(q1)) {
+ quat1 = (QuaternionObject*)q1;
+ if(!BaseMath_ReadCallback(quat1))
+ return NULL;
+ }
+ if(QuaternionObject_Check(q2)) {
+ quat2 = (QuaternionObject*)q2;
+ if(!BaseMath_ReadCallback(quat2))
+ return NULL;
+ }
- if(QuaternionObject_Check(q1) && QuaternionObject_Check(q2)) { /* QUAT*QUAT (dot product) */
- for(x = 0; x < 4; x++) {
- dot += quat1->quat[x] * quat1->quat[x];
- }
- return PyFloat_FromDouble(dot);
+ if(quat1 && quat2) { /* QUAT*QUAT (dot product) */
+ return PyFloat_FromDouble(QuatDot(quat1->quat, quat2->quat));
}
/* the only case this can happen (for a supported type is "FLOAT*QUAT" ) */
if(!QuaternionObject_Check(q1)) {
scalar= PyFloat_AsDouble(q1);
if ((scalar == -1.0 && PyErr_Occurred())==0) { /* FLOAT*QUAT */
- for(x = 0; x < 4; x++) {
- quat[x] = quat2->quat[x] * scalar;
- }
+ QUATCOPY(quat, quat2->quat);
+ QuatMulf(quat, scalar);
return newQuaternionObject(quat, Py_NEW);
}
PyErr_SetString(PyExc_TypeError, "Quaternion multiplication: val * quat, val is not an acceptable type");
scalar= PyFloat_AsDouble(q2);
if ((scalar == -1.0 && PyErr_Occurred())==0) { /* QUAT*FLOAT */
- for(x = 0; x < 4; x++) {
- quat[x] = quat1->quat[x] * scalar;
- }
+ QUATCOPY(quat, quat1->quat);
+ QuatMulf(quat, scalar);
return newQuaternionObject(quat, Py_NEW);
}
}
static PyObject *Quaternion_getAxis( QuaternionObject * self, void *type )
{
- switch( (long)type ) {
- case 'W':
- return PyFloat_FromDouble(self->quat[0]);
- case 'X':
- return PyFloat_FromDouble(self->quat[1]);
- case 'Y':
- return PyFloat_FromDouble(self->quat[2]);
- case 'Z':
- return PyFloat_FromDouble(self->quat[3]);
- }
-
- PyErr_SetString(PyExc_SystemError, "corrupt quaternion, cannot get axis");
- return NULL;
+ return Quaternion_item(self, GET_INT_FROM_POINTER(type));
}
static int Quaternion_setAxis( QuaternionObject * self, PyObject * value, void * type )
{
- float param= (float)PyFloat_AsDouble( value );
-
- if (param==-1 && PyErr_Occurred()) {
- PyErr_SetString( PyExc_TypeError, "expected a number for the vector axis" );
- return -1;
- }
- switch( (long)type ) {
- case 'W':
- self->quat[0]= param;
- break;
- case 'X':
- self->quat[1]= param;
- break;
- case 'Y':
- self->quat[2]= param;
- break;
- case 'Z':
- self->quat[3]= param;
- break;
- }
-
- return 0;
-}
-
-static PyObject *Quaternion_getWrapped( QuaternionObject * self, void *type )
-{
- if (self->wrapped == Py_WRAP)
- Py_RETURN_TRUE;
- else
- Py_RETURN_FALSE;
+ return Quaternion_ass_item(self, GET_INT_FROM_POINTER(type), value);
}
static PyObject *Quaternion_getMagnitude( QuaternionObject * self, void *type )
{
- double mag = 0.0;
- int i;
- for(i = 0; i < 4; i++) {
- mag += self->quat[i] * self->quat[i];
- }
- return PyFloat_FromDouble(sqrt(mag));
+ return PyFloat_FromDouble(sqrt(QuatDot(self->quat, self->quat)));
}
static PyObject *Quaternion_getAngle( QuaternionObject * self, void *type )
{"w",
(getter)Quaternion_getAxis, (setter)Quaternion_setAxis,
"Quaternion W value",
- (void *)'W'},
+ (void *)0},
{"x",
(getter)Quaternion_getAxis, (setter)Quaternion_setAxis,
"Quaternion X axis",
- (void *)'X'},
+ (void *)1},
{"y",
(getter)Quaternion_getAxis, (setter)Quaternion_setAxis,
"Quaternion Y axis",
- (void *)'Y'},
+ (void *)2},
{"z",
(getter)Quaternion_getAxis, (setter)Quaternion_setAxis,
"Quaternion Z axis",
- (void *)'Z'},
+ (void *)3},
{"magnitude",
(getter)Quaternion_getMagnitude, (setter)NULL,
"Size of the quaternion",
"quaternion axis as a vector",
NULL},
{"wrapped",
- (getter)Quaternion_getWrapped, (setter)NULL,
+ (getter)BaseMathObject_getWrapped, (setter)NULL,
"True when this wraps blenders internal data",
NULL},
+ {"__owner__",
+ (getter)BaseMathObject_getOwner, (setter)NULL,
+ "Read only owner for vectors that depend on another object",
+ NULL},
+
{NULL,NULL,NULL,NULL,NULL} /* Sentinel */
};
"quaternion", //tp_name
sizeof(QuaternionObject), //tp_basicsize
0, //tp_itemsize
- (destructor)Quaternion_dealloc, //tp_dealloc
+ (destructor)BaseMathObject_dealloc, //tp_dealloc
0, //tp_print
0, //tp_getattr
0, //tp_setattr
PyObject *newQuaternionObject(float *quat, int type)
{
QuaternionObject *self;
- int x;
self = PyObject_NEW(QuaternionObject, &quaternion_Type);
- self->data.blend_data = NULL;
- self->data.py_data = NULL;
+
+ /* init callbacks as NULL */
+ self->cb_user= NULL;
+ self->cb_type= self->cb_subtype= 0;
if(type == Py_WRAP){
- self->data.blend_data = quat;
- self->quat = self->data.blend_data;
+ self->quat = quat;
self->wrapped = Py_WRAP;
}else if (type == Py_NEW){
- self->data.py_data = PyMem_Malloc(4 * sizeof(float));
- self->quat = self->data.py_data;
+ self->quat = PyMem_Malloc(4 * sizeof(float));
if(!quat) { //new empty
- Quaternion_Identity(self);
- Py_DECREF(self);
+ QuatOne(self->quat);
}else{
- for(x = 0; x < 4; x++){
- self->quat[x] = quat[x];
- }
+ QUATCOPY(self->quat, quat);
}
self->wrapped = Py_NEW;
}else{ //bad type
}
return (PyObject *) self;
}
+
+PyObject *newQuaternionObject_cb(PyObject *cb_user, int cb_type, int cb_subtype)
+{
+ QuaternionObject *self= (QuaternionObject *)newQuaternionObject(NULL, Py_NEW);
+ if(self) {
+ Py_INCREF(cb_user);
+ self->cb_user= cb_user;
+ self->cb_type= (unsigned char)cb_type;
+ self->cb_subtype= (unsigned char)cb_subtype;
+ }
+
+ return (PyObject *)self;
+}