I made multitude of fixes based on the comments provided online:
[blender.git] / source / blender / blenkernel / intern / effect.c
index e3c4f12184ed1d7bd6f46fe8daa9fbd55344f140..468f39bf731b214ec613ec089cb3e48a98c3e015 100644 (file)
@@ -17,7 +17,7 @@
  *
  * You should have received a copy of the GNU General Public License
  * along with this program; if not, write to the Free Software Foundation,
- * Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
  *
  * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
  * All rights reserved.
  * ***** END GPL LICENSE BLOCK *****
  */
 
+/** \file blender/blenkernel/intern/effect.c
+ *  \ingroup bke
+ */
+
+
+#include <stddef.h>
 #include "BLI_storage.h" /* _LARGEFILE_SOURCE */
 
 #include <math.h>
 #include "DNA_material_types.h"
 #include "DNA_object_types.h"
 #include "DNA_object_force.h"
+#include "DNA_particle_types.h"
 #include "DNA_texture_types.h"
 #include "DNA_scene_types.h"
 
-#include "BLI_arithb.h"
+#include "BLI_math.h"
 #include "BLI_blenlib.h"
 #include "BLI_jitter.h"
+#include "BLI_listbase.h"
+#include "BLI_noise.h"
 #include "BLI_rand.h"
+#include "BLI_utildefines.h"
 
 #include "PIL_time.h"
 
@@ -68,6 +78,7 @@
 #include "BKE_depsgraph.h"
 #include "BKE_displist.h"
 #include "BKE_DerivedMesh.h"
+#include "BKE_cdderivedmesh.h"
 #include "BKE_effect.h"
 #include "BKE_global.h"
 #include "BKE_group.h"
 #include "BKE_main.h"
 #include "BKE_modifier.h"
 #include "BKE_object.h"
+#include "BKE_particle.h"
 #include "BKE_scene.h"
-#include "BKE_screen.h"
-#include "BKE_utildefines.h"
+
 
 #include "RE_render_ext.h"
+#include "RE_shader_ext.h"
 
 /* fluid sim particle import */
 #ifndef DISABLE_ELBEEM
 
 //XXX #include "BIF_screen.h"
 
-PartDeflect *object_add_collision_fields(void)
+EffectorWeights *BKE_add_effector_weights(Group *group)
+{
+       EffectorWeights *weights = MEM_callocN(sizeof(EffectorWeights), "EffectorWeights");
+       int i;
+
+       for(i=0; i<NUM_PFIELD_TYPES; i++)
+               weights->weight[i] = 1.0f;
+
+       weights->global_gravity = 1.0f;
+
+       weights->group = group;
+
+       return weights;
+}
+PartDeflect *object_add_collision_fields(int type)
 {
        PartDeflect *pd;
 
        pd= MEM_callocN(sizeof(PartDeflect), "PartDeflect");
 
+       pd->forcefield = type;
        pd->pdef_sbdamp = 0.1f;
        pd->pdef_sbift  = 0.2f;
        pd->pdef_sboft  = 0.02f;
        pd->seed = ((unsigned int)(ceil(PIL_check_seconds_timer()))+1) % 128;
        pd->f_strength = 1.0f;
+       pd->f_damp = 1.0f;
+
+       /* set sensible defaults based on type */
+       switch(type) {
+               case PFIELD_VORTEX:
+                       pd->shape = PFIELD_SHAPE_PLANE;
+                       break;
+               case PFIELD_WIND:
+                       pd->shape = PFIELD_SHAPE_PLANE;
+                       pd->f_flow = 1.0f; /* realistic wind behavior */
+                       break;
+               case PFIELD_TEXTURE:
+                       pd->f_size = 1.0f;
+                       break;
+       }
+       pd->flag = PFIELD_DO_LOCATION|PFIELD_DO_ROTATION;
 
        return pd;
 }
@@ -128,7 +171,7 @@ PartEff *give_parteff(Object *ob)
                if(paf->type==EFF_PARTICLE) return paf;
                paf= paf->next;
        }
-       return 0;
+       return NULL;
 }
 
 void free_effect(Effect *eff)
@@ -156,99 +199,243 @@ void free_effects(ListBase *lb)
 }
 
 /* -------------------------- Effectors ------------------ */
+void free_partdeflect(PartDeflect *pd)
+{
+       if(!pd)
+               return;
+
+       if(pd->tex)
+               pd->tex->id.us--;
+
+       if(pd->rng)
+               rng_free(pd->rng);
+
+       MEM_freeN(pd);
+}
 
-static void add_to_effectorcache(ListBase *lb, Scene *scene, Object *ob, Object *obsrc)
+static void precalculate_effector(EffectorCache *eff)
 {
-       pEffectorCache *ec;
-       PartDeflect *pd= ob->pd;
-                       
-       if(pd->forcefield == PFIELD_GUIDE) {
-               if(ob->type==OB_CURVE && obsrc->type==OB_MESH) {        /* guides only do mesh particles */
-                       Curve *cu= ob->data;
-                       if(cu->flag & CU_PATH) {
-                               if(cu->path==NULL || cu->path->data==NULL)
-                                       makeDispListCurveTypes(scene, ob, 0);
-                               if(cu->path && cu->path->data) {
-                                       ec= MEM_callocN(sizeof(pEffectorCache), "effector cache");
-                                       ec->ob= ob;
-                                       BLI_addtail(lb, ec);
-                               }
+       unsigned int cfra = (unsigned int)(eff->scene->r.cfra >= 0 ? eff->scene->r.cfra : -eff->scene->r.cfra);
+       if(!eff->pd->rng)
+               eff->pd->rng = rng_new(eff->pd->seed + cfra);
+       else
+               rng_srandom(eff->pd->rng, eff->pd->seed + cfra);
+
+       if(eff->pd->forcefield == PFIELD_GUIDE && eff->ob->type==OB_CURVE) {
+               Curve *cu= eff->ob->data;
+               if(cu->flag & CU_PATH) {
+                       if(cu->path==NULL || cu->path->data==NULL)
+                               makeDispListCurveTypes(eff->scene, eff->ob, 0);
+
+                       if(cu->path && cu->path->data) {
+                               where_on_path(eff->ob, 0.0, eff->guide_loc, eff->guide_dir, NULL, &eff->guide_radius, NULL);
+                               mul_m4_v3(eff->ob->obmat, eff->guide_loc);
+                               mul_mat3_m4_v3(eff->ob->obmat, eff->guide_dir);
                        }
                }
        }
-       else if(pd->forcefield) {
-               
-               if(pd->forcefield == PFIELD_WIND)
-               {
-                       pd->rng = rng_new(pd->seed);
-               }
-       
-               ec= MEM_callocN(sizeof(pEffectorCache), "effector cache");
-               ec->ob= ob;
-               BLI_addtail(lb, ec);
+       else if(eff->pd->shape == PFIELD_SHAPE_SURFACE) {
+               eff->surmd = (SurfaceModifierData *)modifiers_findByType ( eff->ob, eModifierType_Surface );
+               if(eff->ob->type == OB_CURVE)
+                       eff->flag |= PE_USE_NORMAL_DATA;
+       }
+       else if(eff->psys)
+               psys_update_particle_tree(eff->psys, eff->scene->r.cfra);
+
+       /* Store object velocity */
+       if(eff->ob) {
+               float old_vel[3];
+
+               where_is_object_time(eff->scene, eff->ob, cfra - 1.0f);
+               copy_v3_v3(old_vel, eff->ob->obmat[3]); 
+               where_is_object_time(eff->scene, eff->ob, cfra);
+               sub_v3_v3v3(eff->velocity, eff->ob->obmat[3], old_vel);
+       }
+}
+static EffectorCache *new_effector_cache(Scene *scene, Object *ob, ParticleSystem *psys, PartDeflect *pd)
+{
+       EffectorCache *eff = MEM_callocN(sizeof(EffectorCache), "EffectorCache");
+       eff->scene = scene;
+       eff->ob = ob;
+       eff->psys = psys;
+       eff->pd = pd;
+       eff->frame = -1;
+
+       precalculate_effector(eff);
+
+       return eff;
+}
+static void add_object_to_effectors(ListBase **effectors, Scene *scene, EffectorWeights *weights, Object *ob, Object *ob_src)
+{
+       EffectorCache *eff = NULL;
+
+       if( ob == ob_src || weights->weight[ob->pd->forcefield] == 0.0f )
+               return;
+
+       if (ob->pd->shape == PFIELD_SHAPE_POINTS && !ob->derivedFinal )
+               return;
+
+       if(*effectors == NULL)
+               *effectors = MEM_callocN(sizeof(ListBase), "effectors list");
+
+       eff = new_effector_cache(scene, ob, NULL, ob->pd);
+
+       /* make sure imat is up to date */
+       invert_m4_m4(ob->imat, ob->obmat);
+
+       BLI_addtail(*effectors, eff);
+}
+static void add_particles_to_effectors(ListBase **effectors, Scene *scene, EffectorWeights *weights, Object *ob, ParticleSystem *psys, ParticleSystem *psys_src)
+{
+       ParticleSettings *part= psys->part;
+
+       if( !psys_check_enabled(ob, psys) )
+               return;
+
+       if( psys == psys_src && (part->flag & PART_SELF_EFFECT) == 0)
+               return;
+
+       if( part->pd && part->pd->forcefield && weights->weight[part->pd->forcefield] != 0.0f) {
+               if(*effectors == NULL)
+                       *effectors = MEM_callocN(sizeof(ListBase), "effectors list");
+
+               BLI_addtail(*effectors, new_effector_cache(scene, ob, psys, part->pd));
+       }
+
+       if (part->pd2 && part->pd2->forcefield && weights->weight[part->pd2->forcefield] != 0.0f) {
+               if(*effectors == NULL)
+                       *effectors = MEM_callocN(sizeof(ListBase), "effectors list");
+
+               BLI_addtail(*effectors, new_effector_cache(scene, ob, psys, part->pd2));
        }
 }
 
 /* returns ListBase handle with objects taking part in the effecting */
-ListBase *pdInitEffectors(Scene *scene, Object *obsrc, Group *group)
+ListBase *pdInitEffectors(Scene *scene, Object *ob_src, ParticleSystem *psys_src, EffectorWeights *weights)
 {
-       static ListBase listb={NULL, NULL};
-       pEffectorCache *ec;
        Base *base;
-       unsigned int layer= obsrc->lay;
+       unsigned int layer= ob_src->lay;
+       ListBase *effectors = NULL;
        
-       if(group) {
+       if(weights->group) {
                GroupObject *go;
                
-               for(go= group->gobject.first; go; go= go->next) {
-                       if( (go->ob->lay & layer) && go->ob->pd && go->ob!=obsrc) {
-                               add_to_effectorcache(&listb, scene, go->ob, obsrc);
+               for(go= weights->group->gobject.first; go; go= go->next) {
+                       if( (go->ob->lay & layer) ) {
+                               if( go->ob->pd && go->ob->pd->forcefield )
+                                       add_object_to_effectors(&effectors, scene, weights, go->ob, ob_src);
+
+                               if( go->ob->particlesystem.first ) {
+                                       ParticleSystem *psys= go->ob->particlesystem.first;
+
+                                       for( ; psys; psys=psys->next )
+                                               add_particles_to_effectors(&effectors, scene, weights, go->ob, psys, psys_src);
+                               }
                        }
                }
        }
        else {
                for(base = scene->base.first; base; base= base->next) {
-                       if( (base->lay & layer) && base->object->pd && base->object!=obsrc) {
-                               add_to_effectorcache(&listb, scene, base->object, obsrc);
+                       if( (base->lay & layer) ) {
+                               if( base->object->pd && base->object->pd->forcefield )
+                               add_object_to_effectors(&effectors, scene, weights, base->object, ob_src);
+
+                               if( base->object->particlesystem.first ) {
+                                       ParticleSystem *psys= base->object->particlesystem.first;
+
+                                       for( ; psys; psys=psys->next )
+                                               add_particles_to_effectors(&effectors, scene, weights, base->object, psys, psys_src);
+                               }
                        }
                }
        }
-       
-       /* make a full copy */
-       for(ec= listb.first; ec; ec= ec->next) {
-               ec->obcopy= *(ec->ob);
+       return effectors;
+}
+
+void pdEndEffectors(ListBase **effectors)
+{
+       if(*effectors) {
+               EffectorCache *eff = (*effectors)->first;
+
+               for(; eff; eff=eff->next) {
+                       if(eff->guide_data)
+                               MEM_freeN(eff->guide_data);
+               }
+
+               BLI_freelistN(*effectors);
+               MEM_freeN(*effectors);
+               *effectors = NULL;
        }
+}
+
 
-       if(listb.first)
-               return &listb;
+void pd_point_from_particle(ParticleSimulationData *sim, ParticleData *pa, ParticleKey *state, EffectedPoint *point)
+{
+       ParticleSettings *part = sim->psys->part;
+       point->loc = state->co;
+       point->vel = state->vel;
+       point->index = pa - sim->psys->particles;
+       point->size = pa->size;
+       point->charge = 0.0f;
        
-       return NULL;
+       if(part->pd && part->pd->forcefield == PFIELD_CHARGE)
+               point->charge += part->pd->f_strength;
+
+       if(part->pd2 && part->pd2->forcefield == PFIELD_CHARGE)
+               point->charge += part->pd2->f_strength;
+
+       point->vel_to_sec = 1.0f;
+       point->vel_to_frame = psys_get_timestep(sim);
+
+       point->flag = 0;
+
+       if(sim->psys->part->flag & PART_ROT_DYN) {
+               point->ave = state->ave;
+               point->rot = state->rot;
+       }
+       else
+               point->ave = point->rot = NULL;
+
+       point->psys = sim->psys;
 }
 
-void pdEndEffectors(ListBase *lb)
+void pd_point_from_loc(Scene *scene, float *loc, float *vel, int index, EffectedPoint *point)
 {
-       if(lb) {
-               pEffectorCache *ec;
-               /* restore full copy */
-               for(ec= lb->first; ec; ec= ec->next)
-               {
-                       if(ec->ob->pd && (ec->ob->pd->forcefield == PFIELD_WIND))
-                               rng_free(ec->ob->pd->rng);
-                       
-                       *(ec->ob)= ec->obcopy;
-               }
+       point->loc = loc;
+       point->vel = vel;
+       point->index = index;
+       point->size = 0.0f;
 
-               BLI_freelistN(lb);
-       }
+       point->vel_to_sec = (float)scene->r.frs_sec;
+       point->vel_to_frame = 1.0f;
+
+       point->flag = 0;
+
+       point->ave = point->rot = NULL;
+       point->psys = NULL;
 }
+void pd_point_from_soft(Scene *scene, float *loc, float *vel, int index, EffectedPoint *point)
+{
+       point->loc = loc;
+       point->vel = vel;
+       point->index = index;
+       point->size = 0.0f;
+
+       point->vel_to_sec = (float)scene->r.frs_sec;
+       point->vel_to_frame = 1.0f;
 
+       point->flag = PE_WIND_AS_SPEED;
 
+       point->ave = point->rot = NULL;
+
+       point->psys = NULL;
+}
 /************************************************/
 /*                     Effectors               */
 /************************************************/
 
 // triangle - ray callback function
-static void eff_tri_ray_hit(void *userdata, int index, const BVHTreeRay *ray, BVHTreeRayHit *hit)
+static void eff_tri_ray_hit(void *UNUSED(userData), int UNUSED(index), const BVHTreeRay *UNUSED(ray), BVHTreeRayHit *hit)
 {      
        // whenever we hit a bounding box, we don't check further
        hit->dist = -1;
@@ -256,26 +443,32 @@ static void eff_tri_ray_hit(void *userdata, int index, const BVHTreeRay *ray, BV
 }
 
 // get visibility of a wind ray
-static float eff_calc_visibility(Scene *scene, Object *ob, float *co, float *dir)
+static float eff_calc_visibility(ListBase *colliders, EffectorCache *eff, EffectorData *efd, EffectedPoint *point)
 {
-       CollisionModifierData **collobjs = NULL;
-       int numcollobj = 0, i;
+       ListBase *colls = colliders;
+       ColliderCache *col;
        float norm[3], len = 0.0;
-       float visibility = 1.0;
-       
-       collobjs = get_collisionobjects(scene, ob, &numcollobj);
-       
-       if(!collobjs)
-               return 0;
+       float visibility = 1.0, absorption = 0.0;
        
-       VECCOPY(norm, dir);
-       VecNegf(norm);
-       len = Normalize(norm);
+       if(!(eff->pd->flag & PFIELD_VISIBILITY))
+               return visibility;
+
+       if(!colls)
+               colls = get_collider_cache(eff->scene, eff->ob, NULL);
+
+       if(!colls)
+               return visibility;
+
+       negate_v3_v3(norm, efd->vec_to_point);
+       len = normalize_v3(norm);
        
        // check all collision objects
-       for(i = 0; i < numcollobj; i++)
+       for(col = colls->first; col; col = col->next)
        {
-               CollisionModifierData *collmd = collobjs[i];
+               CollisionModifierData *collmd = col->collmd;
+
+               if(col->ob == eff->ob)
+                       continue;
                
                if(collmd->bvhtree)
                {
@@ -285,18 +478,21 @@ static float eff_calc_visibility(Scene *scene, Object *ob, float *co, float *dir
                        hit.dist = len + FLT_EPSILON;
                        
                        // check if the way is blocked
-                       if(BLI_bvhtree_ray_cast(collmd->bvhtree, co, norm, 0.0f, &hit, eff_tri_ray_hit, NULL)>=0)
+                       if(BLI_bvhtree_ray_cast(collmd->bvhtree, point->loc, norm, 0.0f, &hit, eff_tri_ray_hit, NULL)>=0)
                        {
+                               absorption= col->ob->pd->absorption;
+
                                // visibility is only between 0 and 1, calculated from 1-absorption
-                               visibility *= MAX2(0.0, MIN2(1.0, (1.0-((float)collmd->absorption)*0.01)));
+                               visibility *= CLAMPIS(1.0f-absorption, 0.0f, 1.0f);
                                
                                if(visibility <= 0.0f)
                                        break;
                        }
                }
        }
-       
-       MEM_freeN(collobjs);
+
+       if(!colliders)
+               free_collider_cache(&colls);
        
        return visibility;
 }
@@ -309,7 +505,7 @@ static float wind_func(struct RNG *rng, float strength)
        float ret;
        float sign = 0;
        
-       sign = ((float)random > 64.0) ? 1.0: -1.0; // dividing by 2 is not giving equal sign distribution
+       sign = ((float)random > 64.0f) ? 1.0f: -1.0f; // dividing by 2 is not giving equal sign distribution
        
        ret = sign*((float)random / force)*strength/128.0f;
        
@@ -331,7 +527,7 @@ static float falloff_func(float fac, int usemin, float mindist, int usemax, floa
        if(!usemin)
                mindist = 0.0;
 
-       return pow((double)1.0+fac-mindist, (double)-power);
+       return pow((double)(1.0f+fac-mindist), (double)(-power));
 }
 
 static float falloff_func_dist(PartDeflect *pd, float fac)
@@ -344,43 +540,39 @@ static float falloff_func_rad(PartDeflect *pd, float fac)
        return falloff_func(fac, pd->flag&PFIELD_USEMINR, pd->minrad, pd->flag&PFIELD_USEMAXR, pd->maxrad, pd->f_power_r);
 }
 
-float effector_falloff(PartDeflect *pd, float *eff_velocity, float *vec_to_part)
+float effector_falloff(EffectorCache *eff, EffectorData *efd, EffectedPoint *UNUSED(point), EffectorWeights *weights)
 {
-       float eff_dir[3], temp[3];
-       float falloff=1.0, fac, r_fac;
-
-       if(pd->forcefield==PFIELD_LENNARDJ)
-               return falloff; /* Lennard-Jones field has it's own falloff built in */
+       float temp[3];
+       float falloff = weights ? weights->weight[0] * weights->weight[eff->pd->forcefield] : 1.0f;
+       float fac, r_fac;
 
-       VecCopyf(eff_dir,eff_velocity);
-       Normalize(eff_dir);
+       fac = dot_v3v3(efd->nor, efd->vec_to_point2);
 
-       if(pd->flag & PFIELD_POSZ && Inpf(eff_dir,vec_to_part)<0.0f)
+       if(eff->pd->zdir == PFIELD_Z_POS && fac < 0.0f)
                falloff=0.0f;
-       else switch(pd->falloff){
+       else if(eff->pd->zdir == PFIELD_Z_NEG && fac > 0.0f)
+               falloff=0.0f;
+       else switch(eff->pd->falloff){
                case PFIELD_FALL_SPHERE:
-                       fac=VecLength(vec_to_part);
-                       falloff= falloff_func_dist(pd, fac);
+                       falloff*= falloff_func_dist(eff->pd, efd->distance);
                        break;
 
                case PFIELD_FALL_TUBE:
-                       fac=Inpf(vec_to_part,eff_dir);
-                       falloff= falloff_func_dist(pd, ABS(fac));
+                       falloff*= falloff_func_dist(eff->pd, ABS(fac));
                        if(falloff == 0.0f)
                                break;
 
-                       VECADDFAC(temp,vec_to_part,eff_dir,-fac);
-                       r_fac=VecLength(temp);
-                       falloff*= falloff_func_rad(pd, r_fac);
+                       VECADDFAC(temp, efd->vec_to_point, efd->nor, -fac);
+                       r_fac= len_v3(temp);
+                       falloff*= falloff_func_rad(eff->pd, r_fac);
                        break;
                case PFIELD_FALL_CONE:
-                       fac=Inpf(vec_to_part,eff_dir);
-                       falloff= falloff_func_dist(pd, ABS(fac));
+                       falloff*= falloff_func_dist(eff->pd, ABS(fac));
                        if(falloff == 0.0f)
                                break;
 
-                       r_fac=saacos(fac/VecLength(vec_to_part))*180.0f/(float)M_PI;
-                       falloff*= falloff_func_rad(pd, r_fac);
+                       r_fac=saacos(fac/len_v3(efd->vec_to_point))*180.0f/(float)M_PI;
+                       falloff*= falloff_func_rad(eff->pd, r_fac);
 
                        break;
        }
@@ -388,144 +580,426 @@ float effector_falloff(PartDeflect *pd, float *eff_velocity, float *vec_to_part)
        return falloff;
 }
 
-void do_physical_effector(Scene *scene, Object *ob, float *opco, short type, float force_val, float distance, float falloff, float size, float damp, float *eff_velocity, float *vec_to_part, float *velocity, float *field, int planar, struct RNG *rng, float noise_factor, float charge, float pa_size)
+int closest_point_on_surface(SurfaceModifierData *surmd, float *co, float *surface_co, float *surface_nor, float *surface_vel)
 {
-       float mag_vec[3]={0,0,0};
-       float temp[3], temp2[3];
-       float eff_vel[3];
-       float noise = 0, visibility;
-       
-       // calculate visibility
-       visibility = eff_calc_visibility(scene, ob, opco, vec_to_part);
-       if(visibility <= 0.0)
-               return;
-       falloff *= visibility;
+       BVHTreeNearest nearest;
 
-       VecCopyf(eff_vel,eff_velocity);
-       Normalize(eff_vel);
+       nearest.index = -1;
+       nearest.dist = FLT_MAX;
 
-       switch(type){
-               case PFIELD_WIND:
-                       VECCOPY(mag_vec,eff_vel);
-                       
-                       // add wind noise here, only if we have wind
-                       if((noise_factor > 0.0f) && (force_val > FLT_EPSILON))
-                               noise = wind_func(rng, noise_factor);
+       BLI_bvhtree_find_nearest(surmd->bvhtree->tree, co, &nearest, surmd->bvhtree->nearest_callback, surmd->bvhtree);
+
+       if(nearest.index != -1) {
+               copy_v3_v3(surface_co, nearest.co);
+
+               if(surface_nor) {
+                       copy_v3_v3(surface_nor, nearest.no);
+               }
+
+               if(surface_vel) {
+                       MFace *mface = CDDM_get_face(surmd->dm, nearest.index);
                        
-                       VecMulf(mag_vec,(force_val+noise)*falloff);
-                       VecAddf(field,field,mag_vec);
-                       break;
+                       copy_v3_v3(surface_vel, surmd->v[mface->v1].co);
+                       add_v3_v3(surface_vel, surmd->v[mface->v2].co);
+                       add_v3_v3(surface_vel, surmd->v[mface->v3].co);
+                       if(mface->v4)
+                               add_v3_v3(surface_vel, surmd->v[mface->v4].co);
 
-               case PFIELD_FORCE:
-                       if(planar)
-                               Projf(mag_vec,vec_to_part,eff_vel);
-                       else
-                               VecCopyf(mag_vec,vec_to_part);
+                       mul_v3_fl(surface_vel, mface->v4 ? 0.25f : 0.333f);
+               }
+               return 1;
+       }
 
-                       Normalize(mag_vec);
+       return 0;
+}
+int get_effector_data(EffectorCache *eff, EffectorData *efd, EffectedPoint *point, int real_velocity)
+{
+       float cfra = eff->scene->r.cfra;
+       int ret = 0;
 
-                       VecMulf(mag_vec,force_val*falloff);
-                       VecAddf(field,field,mag_vec);
-                       break;
+       if(eff->pd && eff->pd->shape==PFIELD_SHAPE_SURFACE && eff->surmd) {
+               /* closest point in the object surface is an effector */
+               float vec[3];
 
-               case PFIELD_VORTEX:
-                       Crossf(mag_vec,eff_vel,vec_to_part);
+               /* using velocity corrected location allows for easier sliding over effector surface */
+               copy_v3_v3(vec, point->vel);
+               mul_v3_fl(vec, point->vel_to_frame);
+               add_v3_v3(vec, point->loc);
 
-                       Normalize(mag_vec);
+               ret = closest_point_on_surface(eff->surmd, vec, efd->loc, efd->nor, real_velocity ? efd->vel : NULL);
 
-                       VecMulf(mag_vec,force_val*distance*falloff);
-                       VecAddf(field,field,mag_vec);
+               efd->size = 0.0f;
+       }
+       else if(eff->pd && eff->pd->shape==PFIELD_SHAPE_POINTS) {
 
-                       break;
-               case PFIELD_MAGNET:
-                       if(planar)
-                               VecCopyf(temp,eff_vel);
-                       else
-                               /* magnetic field of a moving charge */
-                               Crossf(temp,eff_vel,vec_to_part);
+               if(eff->ob->derivedFinal) {
+                       DerivedMesh *dm = eff->ob->derivedFinal;
 
-                       Normalize(temp);
+                       dm->getVertCo(dm, *efd->index, efd->loc);
+                       dm->getVertNo(dm, *efd->index, efd->nor);
 
-                       Crossf(temp2,velocity,temp);
-                       VecAddf(mag_vec,mag_vec,temp2);
+                       mul_m4_v3(eff->ob->obmat, efd->loc);
+                       mul_mat3_m4_v3(eff->ob->obmat, efd->nor);
 
-                       VecMulf(mag_vec,force_val*falloff);
-                       VecAddf(field,field,mag_vec);
-                       break;
-               case PFIELD_HARMONIC:
-                       if(planar)
-                               Projf(mag_vec,vec_to_part,eff_vel);
-                       else
-                               VecCopyf(mag_vec,vec_to_part);
+                       normalize_v3(efd->nor);
 
-                       VecMulf(mag_vec,force_val*falloff);
-                       VecSubf(field,field,mag_vec);
+                       efd->size = 0.0f;
 
-                       VecCopyf(mag_vec,velocity);
-                       VecMulf(mag_vec,damp*2.0f*(float)sqrt(force_val));
-                       VecSubf(field,field,mag_vec);
-                       break;
-               case PFIELD_CHARGE:
-                       if(planar)
-                               Projf(mag_vec,vec_to_part,eff_vel);
-                       else
-                               VecCopyf(mag_vec,vec_to_part);
+                       /**/
+                       ret = 1;
+               }
+       }
+       else if(eff->psys) {
+               ParticleData *pa = eff->psys->particles + *efd->index;
+               ParticleKey state;
 
-                       Normalize(mag_vec);
+               /* exclude the particle itself for self effecting particles */
+               if(eff->psys == point->psys && *efd->index == point->index)
+                       ;
+               else {
+                       ParticleSimulationData sim= {NULL};
+                       sim.scene= eff->scene;
+                       sim.ob= eff->ob;
+                       sim.psys= eff->psys;
+
+                       /* TODO: time from actual previous calculated frame (step might not be 1) */
+                       state.time = cfra - 1.0f;
+                       ret = psys_get_particle_state(&sim, *efd->index, &state, 0);
+
+                       /* TODO */
+                       //if(eff->pd->forcefiled == PFIELD_HARMONIC && ret==0) {
+                       //      if(pa->dietime < eff->psys->cfra)
+                       //              eff->flag |= PE_VELOCITY_TO_IMPULSE;
+                       //}
+
+                       copy_v3_v3(efd->loc, state.co);
+
+                       /* rather than use the velocity use rotated x-axis (defaults to velocity) */
+                       efd->nor[0] = 1.f;
+                       efd->nor[1] = efd->nor[2] = 0.f;
+                       mul_qt_v3(state.rot, efd->nor);
+               
+                       if(real_velocity)
+                               copy_v3_v3(efd->vel, state.vel);
 
-                       VecMulf(mag_vec,charge*force_val*falloff);
-                       VecAddf(field,field,mag_vec);
-                       break;
-               case PFIELD_LENNARDJ:
-               {
-                       float fac;
+                       efd->size = pa->size;
+               }
+       }
+       else {
+               /* use center of object for distance calculus */
+               Object *ob = eff->ob;
+               Object obcopy = *ob;
+
+               /* use z-axis as normal*/
+               normalize_v3_v3(efd->nor, ob->obmat[2]);
+
+               if(eff->pd && eff->pd->shape == PFIELD_SHAPE_PLANE) {
+                       float temp[3], translate[3];
+                       sub_v3_v3v3(temp, point->loc, ob->obmat[3]);
+                       project_v3_v3v3(translate, temp, efd->nor);
+
+                       /* for vortex the shape chooses between old / new force */
+                       if(eff->pd->forcefield == PFIELD_VORTEX)
+                               add_v3_v3v3(efd->loc, ob->obmat[3], translate);
+                       else /* normally efd->loc is closest point on effector xy-plane */
+                               sub_v3_v3v3(efd->loc, point->loc, translate);
+               }
+               else {
+                       copy_v3_v3(efd->loc, ob->obmat[3]);
+               }
+
+               if(real_velocity)
+                       copy_v3_v3(efd->vel, eff->velocity);
+
+               *eff->ob = obcopy;
+
+               efd->size = 0.0f;
+
+               ret = 1;
+       }
+
+       if(ret) {
+               sub_v3_v3v3(efd->vec_to_point, point->loc, efd->loc);
+               efd->distance = len_v3(efd->vec_to_point);
+
+               /* rest length for harmonic effector, will have to see later if this could be extended to other effectors */
+               if(eff->pd && eff->pd->forcefield == PFIELD_HARMONIC && eff->pd->f_size)
+                       mul_v3_fl(efd->vec_to_point, (efd->distance-eff->pd->f_size)/efd->distance);
+
+               if(eff->flag & PE_USE_NORMAL_DATA) {
+                       copy_v3_v3(efd->vec_to_point2, efd->vec_to_point);
+                       copy_v3_v3(efd->nor2, efd->nor);
+               }
+               else {
+                       /* for some effectors we need the object center every time */
+                       sub_v3_v3v3(efd->vec_to_point2, point->loc, eff->ob->obmat[3]);
+                       normalize_v3_v3(efd->nor2, eff->ob->obmat[2]);
+               }
+       }
+
+       return ret;
+}
+static void get_effector_tot(EffectorCache *eff, EffectorData *efd, EffectedPoint *point, int *tot, int *p, int *step)
+{
+       if(eff->pd->shape == PFIELD_SHAPE_POINTS) {
+               efd->index = p;
+
+               *p = 0;
+               *tot = eff->ob->derivedFinal ? eff->ob->derivedFinal->numVertData : 1;
+
+               if(*tot && eff->pd->forcefield == PFIELD_HARMONIC && point->index >= 0) {
+                       *p = point->index % *tot;
+                       *tot = *p+1;
+               }
+       }
+       else if(eff->psys) {
+               efd->index = p;
+
+               *p = 0;
+               *tot = eff->psys->totpart;
+               
+               if(eff->pd->forcefield == PFIELD_CHARGE) {
+                       /* Only the charge of the effected particle is used for 
+                       interaction, not fall-offs. If the fall-offs aren't the 
+                       same this will be unphysical, but for animation this            
+                       could be the wanted behavior. If you want physical
+                       correctness the fall-off should be spherical 2.0 anyways.
+                       */
+                       efd->charge = eff->pd->f_strength;
+               }
+               else if(eff->pd->forcefield == PFIELD_HARMONIC && (eff->pd->flag & PFIELD_MULTIPLE_SPRINGS)==0) {
+                       /* every particle is mapped to only one harmonic effector particle */
+                       *p= point->index % eff->psys->totpart;
+                       *tot= *p + 1;
+               }
+
+               if(eff->psys->part->effector_amount) {
+                       int totpart = eff->psys->totpart;
+                       int amount = eff->psys->part->effector_amount;
+
+                       *step = (totpart > amount) ? totpart/amount : 1;
+               }
+       }
+       else {
+               *p = 0;
+               *tot = 1;
+       }
+}
+static void do_texture_effector(EffectorCache *eff, EffectorData *efd, EffectedPoint *point, float *total_force)
+{
+       TexResult result[4];
+       float tex_co[3], strength, force[3];
+       float nabla = eff->pd->tex_nabla;
+       int hasrgb;
+       short mode = eff->pd->tex_mode;
+
+       if(!eff->pd->tex)
+               return;
+
+       result[0].nor = result[1].nor = result[2].nor = result[3].nor = NULL;
+
+       strength= eff->pd->f_strength * efd->falloff;
+
+       copy_v3_v3(tex_co,point->loc);
+
+       if(eff->pd->flag & PFIELD_TEX_2D) {
+               float fac=-dot_v3v3(tex_co, efd->nor);
+               VECADDFAC(tex_co, tex_co, efd->nor, fac);
+       }
+
+       if(eff->pd->flag & PFIELD_TEX_OBJECT) {
+               mul_m4_v3(eff->ob->imat, tex_co);
+       }
 
-                       if(planar) {
-                               Projf(mag_vec,vec_to_part,eff_vel);
-                               distance = VecLength(mag_vec);
+       hasrgb = multitex_ext(eff->pd->tex, tex_co, NULL,NULL, 0, result);
+
+       if(hasrgb && mode==PFIELD_TEX_RGB) {
+               force[0] = (0.5f - result->tr) * strength;
+               force[1] = (0.5f - result->tg) * strength;
+               force[2] = (0.5f - result->tb) * strength;
+       }
+       else {
+               strength/=nabla;
+
+               tex_co[0] += nabla;
+               multitex_ext(eff->pd->tex, tex_co, NULL, NULL, 0, result+1);
+
+               tex_co[0] -= nabla;
+               tex_co[1] += nabla;
+               multitex_ext(eff->pd->tex, tex_co, NULL, NULL, 0, result+2);
+
+               tex_co[1] -= nabla;
+               tex_co[2] += nabla;
+               multitex_ext(eff->pd->tex, tex_co, NULL, NULL, 0, result+3);
+
+               if(mode == PFIELD_TEX_GRAD || !hasrgb) { /* if we dont have rgb fall back to grad */
+                       force[0] = (result[0].tin - result[1].tin) * strength;
+                       force[1] = (result[0].tin - result[2].tin) * strength;
+                       force[2] = (result[0].tin - result[3].tin) * strength;
+               }
+               else { /*PFIELD_TEX_CURL*/
+                       float dbdy, dgdz, drdz, dbdx, dgdx, drdy;
+
+                       dbdy = result[2].tb - result[0].tb;
+                       dgdz = result[3].tg - result[0].tg;
+                       drdz = result[3].tr - result[0].tr;
+                       dbdx = result[1].tb - result[0].tb;
+                       dgdx = result[1].tg - result[0].tg;
+                       drdy = result[2].tr - result[0].tr;
+
+                       force[0] = (dbdy - dgdz) * strength;
+                       force[1] = (drdz - dbdx) * strength;
+                       force[2] = (dgdx - drdy) * strength;
+               }
+       }
+
+       if(eff->pd->flag & PFIELD_TEX_2D){
+               float fac = -dot_v3v3(force, efd->nor);
+               VECADDFAC(force, force, efd->nor, fac);
+       }
+
+       add_v3_v3(total_force, force);
+}
+static void do_physical_effector(EffectorCache *eff, EffectorData *efd, EffectedPoint *point, float *total_force)
+{
+       PartDeflect *pd = eff->pd;
+       RNG *rng = pd->rng;
+       float force[3]={0,0,0};
+       float temp[3];
+       float fac;
+       float strength = pd->f_strength;
+       float damp = pd->f_damp;
+       float noise_factor = pd->f_noise;
+
+       if(noise_factor > 0.0f) {
+               strength += wind_func(rng, noise_factor);
+
+               if(ELEM(pd->forcefield, PFIELD_HARMONIC, PFIELD_DRAG))
+                       damp += wind_func(rng, noise_factor);
+       }
+
+       copy_v3_v3(force, efd->vec_to_point);
+
+       switch(pd->forcefield){
+               case PFIELD_WIND:
+                       copy_v3_v3(force, efd->nor);
+                       mul_v3_fl(force, strength * efd->falloff);
+                       break;
+               case PFIELD_FORCE:
+                       normalize_v3(force);
+                       mul_v3_fl(force, strength * efd->falloff);
+                       break;
+               case PFIELD_VORTEX:
+                       /* old vortex force */
+                       if(pd->shape == PFIELD_SHAPE_POINT) {
+                               cross_v3_v3v3(force, efd->nor, efd->vec_to_point);
+                               normalize_v3(force);
+                               mul_v3_fl(force, strength * efd->distance * efd->falloff);
+                       }
+                       else {
+                               /* new vortex force */
+                               cross_v3_v3v3(temp, efd->nor2, efd->vec_to_point2);
+                               mul_v3_fl(temp, strength * efd->falloff);
+                               
+                               cross_v3_v3v3(force, efd->nor2, temp);
+                               mul_v3_fl(force, strength * efd->falloff);
+                               
+                               VECADDFAC(temp, temp, point->vel, -point->vel_to_sec);
+                               add_v3_v3(force, temp);
                        }
+                       break;
+               case PFIELD_MAGNET:
+                       if(eff->pd->shape == PFIELD_SHAPE_POINT)
+                               /* magnetic field of a moving charge */
+                               cross_v3_v3v3(temp, efd->nor, efd->vec_to_point);
                        else
-                               VecCopyf(mag_vec,vec_to_part);
-
-                       /* at this distance the field is 60 times weaker than maximum */
-                       if(distance > 2.22 * (size+pa_size))
-                               break;
+                               copy_v3_v3(temp, efd->nor);
 
-                       fac = pow((size+pa_size)/distance,6.0);
+                       normalize_v3(temp);
+                       mul_v3_fl(temp, strength * efd->falloff);
+                       cross_v3_v3v3(force, point->vel, temp);
+                       mul_v3_fl(force, point->vel_to_sec);
+                       break;
+               case PFIELD_HARMONIC:
+                       mul_v3_fl(force, -strength * efd->falloff);
+                       copy_v3_v3(temp, point->vel);
+                       mul_v3_fl(temp, -damp * 2.0f * (float)sqrt(fabs(strength)) * point->vel_to_sec);
+                       add_v3_v3(force, temp);
+                       break;
+               case PFIELD_CHARGE:
+                       mul_v3_fl(force, point->charge * strength * efd->falloff);
+                       break;
+               case PFIELD_LENNARDJ:
+                       fac = pow((efd->size + point->size) / efd->distance, 6.0);
                        
-                       fac = - fac * (1.0 - fac) / distance;
+                       fac = - fac * (1.0f - fac) / efd->distance;
 
                        /* limit the repulsive term drastically to avoid huge forces */
-                       fac = ((fac>2.0) ? 2.0 : fac);
+                       fac = ((fac>2.0f) ? 2.0f : fac);
 
-                       /* 0.003715 is the fac value at 2.22 times (size+pa_size),
-                          substracted to avoid discontinuity at the border
-                       */
-                       VecMulf(mag_vec, force_val * (fac-0.0037315));
-                       VecAddf(field,field,mag_vec);
+                       mul_v3_fl(force, strength * fac);
                        break;
-               }
                case PFIELD_BOID:
                        /* Boid field is handled completely in boids code. */
+                       return;
+               case PFIELD_TURBULENCE:
+                       if(pd->flag & PFIELD_GLOBAL_CO) {
+                               copy_v3_v3(temp, point->loc);
+                       }
+                       else {
+                               VECADD(temp, efd->vec_to_point2, efd->nor2);
+                       }
+                       force[0] = -1.0f + 2.0f * BLI_gTurbulence(pd->f_size, temp[0], temp[1], temp[2], 2,0,2);
+                       force[1] = -1.0f + 2.0f * BLI_gTurbulence(pd->f_size, temp[1], temp[2], temp[0], 2,0,2);
+                       force[2] = -1.0f + 2.0f * BLI_gTurbulence(pd->f_size, temp[2], temp[0], temp[1], 2,0,2);
+                       mul_v3_fl(force, strength * efd->falloff);
+                       break;
+               case PFIELD_DRAG:
+                       copy_v3_v3(force, point->vel);
+                       fac = normalize_v3(force) * point->vel_to_sec;
+
+                       strength = MIN2(strength, 2.0f);
+                       damp = MIN2(damp, 2.0f);
+
+                       mul_v3_fl(force, -efd->falloff * fac * (strength * fac + damp));
                        break;
        }
+
+       if(pd->flag & PFIELD_DO_LOCATION) {
+               VECADDFAC(total_force, total_force, force, 1.0f/point->vel_to_sec);
+
+               if(ELEM(pd->forcefield, PFIELD_HARMONIC, PFIELD_DRAG)==0 && pd->f_flow != 0.0f) {
+                       VECADDFAC(total_force, total_force, point->vel, -pd->f_flow * efd->falloff);
+               }
+       }
+
+       if(pd->flag & PFIELD_DO_ROTATION && point->ave && point->rot) {
+               float xvec[3] = {1.0f, 0.0f, 0.0f};
+               float dave[3];
+               mul_qt_v3(point->rot, xvec);
+               cross_v3_v3v3(dave, xvec, force);
+               if(pd->f_flow != 0.0f) {
+                       VECADDFAC(dave, dave, point->ave, -pd->f_flow * efd->falloff);
+               }
+               add_v3_v3(point->ave, dave);
+       }
 }
 
 /*  -------- pdDoEffectors() --------
-    generic force/speed system, now used for particles and softbodies
-    scene       = scene where it runs in, for time and stuff
+       generic force/speed system, now used for particles and softbodies
+       scene       = scene where it runs in, for time and stuff
        lb                      = listbase with objects that take part in effecting
        opco            = global coord, as input
-    force              = force accumulator
-    speed              = actual current speed which can be altered
+       force           = force accumulator
+       speed           = actual current speed which can be altered
        cur_time        = "external" time in frames, is constant for static particles
        loc_time        = "local" time in frames, range <0-1> for the lifetime of particle
-    par_layer  = layer the caller is in
+       par_layer       = layer the caller is in
        flags           = only used for softbody wind now
        guide           = old speed of particle
 
 */
-void pdDoEffectors(Scene *scene, ListBase *lb, float *opco, float *force, float *speed, float cur_time, float loc_time, unsigned int flags)
+void pdDoEffectors(ListBase *effectors, ListBase *colliders, EffectorWeights *weights, EffectedPoint *point, float *force, float *impulse)
 {
 /*
        Modifies the force on a particle according to its
@@ -540,43 +1014,45 @@ void pdDoEffectors(Scene *scene, ListBase *lb, float *opco, float *force, float
                (particles are guided along a curve bezier or old nurbs)
                (is independent of other effectors)
 */
-       Object *ob;
-       pEffectorCache *ec;
-       PartDeflect *pd;
-       
-       float distance, vec_to_part[3];
-       float falloff;
+       EffectorCache *eff;
+       EffectorData efd;
+       int p=0, tot = 1, step = 1;
 
        /* Cycle through collected objects, get total of (1/(gravity_strength * dist^gravity_power)) */
        /* Check for min distance here? (yes would be cool to add that, ton) */
        
-       for(ec = lb->first; ec; ec= ec->next) {
+       if(effectors) for(eff = effectors->first; eff; eff=eff->next) {
                /* object effectors were fully checked to be OK to evaluate! */
-               ob= ec->ob;
-               pd= ob->pd;
-                       
-               /* Get IPO force strength and fall off values here */
-               where_is_object_time(scene, ob, cur_time);
-                       
-               /* use center of object for distance calculus */
-               VecSubf(vec_to_part, opco, ob->obmat[3]);
-               distance = VecLength(vec_to_part);
 
-               falloff=effector_falloff(pd,ob->obmat[2],vec_to_part);          
-               
-               if(falloff<=0.0f)
-                       ;       /* don't do anything */
-               else {
-                       float field[3]={0,0,0}, tmp[3];
-                       VECCOPY(field, force);
-                       do_physical_effector(scene, ob, opco, pd->forcefield,pd->f_strength,distance,
-                                                               falloff, pd->f_dist, pd->f_damp, ob->obmat[2], vec_to_part,
-                                                               speed,force, pd->flag&PFIELD_PLANAR, pd->rng, pd->f_noise, 0.0f, 0.0f);
-                       
-                       // for softbody backward compatibility
-                       if(flags & PE_WIND_AS_SPEED){
-                               VECSUB(tmp, force, field);
-                               VECSUB(speed, speed, tmp);
+               get_effector_tot(eff, &efd, point, &tot, &p, &step);
+
+               for(; p<tot; p+=step) {
+                       if(get_effector_data(eff, &efd, point, 0)) {
+                               efd.falloff= effector_falloff(eff, &efd, point, weights);
+                               
+                               if(efd.falloff > 0.0f)
+                                       efd.falloff *= eff_calc_visibility(colliders, eff, &efd, point);
+
+                               if(efd.falloff <= 0.0f)
+                                       ;       /* don't do anything */
+                               else if(eff->pd->forcefield == PFIELD_TEXTURE)
+                                       do_texture_effector(eff, &efd, point, force);
+                               else {
+                                       float temp1[3]={0,0,0}, temp2[3];
+                                       copy_v3_v3(temp1, force);
+
+                                       do_physical_effector(eff, &efd, point, force);
+                                       
+                                       // for softbody backward compatibility
+                                       if(point->flag & PE_WIND_AS_SPEED && impulse){
+                                               VECSUB(temp2, force, temp1);
+                                               VECSUB(impulse, impulse, temp2);
+                                       }
+                               }
+                       }
+                       else if(eff->flag & PE_VELOCITY_TO_IMPULSE && impulse) {
+                               /* special case for harmonic effector */
+                               VECADD(impulse, impulse, efd.vel);
                        }
                }
        }