simple povray render integration.
authorCampbell Barton <ideasman42@gmail.com>
Tue, 28 Jul 2009 05:51:38 +0000 (05:51 +0000)
committerCampbell Barton <ideasman42@gmail.com>
Tue, 28 Jul 2009 05:51:38 +0000 (05:51 +0000)
Supports...
- camera/lamp/mesh object types
- meshes with modifiers applied, normals/uv/vertex colors
- materials, reflection, transparency
- spot/area/point lamps, samples, raytrace options
- scene render size, AA setting

Details...
- Doesn't need any 3rd party modules.
- Runs povray from the subprocess module, updating the image from a TARGA.
- Currently no UI panels or support for custom settings.

This could be used as an example for other scripts.

release/io/engine_render_pov.py [new file with mode: 0644]

diff --git a/release/io/engine_render_pov.py b/release/io/engine_render_pov.py
new file mode 100644 (file)
index 0000000..550f988
--- /dev/null
@@ -0,0 +1,564 @@
+import bpy
+
+from math import atan, pi, degrees
+import subprocess
+import os
+import sys
+import time
+
+def write_pov(filename, scene=None, info_callback = None):
+       file = open(filename, 'w')
+       
+       # Only for testing
+       if not scene:
+               scene = bpy.data.scenes[0]
+               
+       render = scene.render_data
+       materialTable = {}
+       
+       def saneName(name):
+               name = name.lower()
+               for ch in ' /\\+=-[]{}().,<>\'":;~!@#$%^&*|?':
+                       name = name.replace(ch, '_')
+               return name
+       
+       def writeMatrix(matrix):
+               file.write('\tmatrix <%.6f, %.6f, %.6f,  %.6f, %.6f, %.6f,  %.6f, %.6f, %.6f,  %.6f, %.6f, %.6f>\n' %\
+               (matrix[0][0], matrix[0][1], matrix[0][2],  matrix[1][0], matrix[1][1], matrix[1][2],  matrix[2][0], matrix[2][1], matrix[2][2],  matrix[3][0], matrix[3][1], matrix[3][2]) )
+       
+       def exportCamera():
+               camera = scene.camera
+               matrix = camera.matrix
+               
+               # compute resolution
+               Qsize=float(render.resolution_x)/float(render.resolution_y)
+               
+               file.write('camera {\n')
+               file.write('\tlocation  <0, 0, 0>\n')
+               file.write('\tlook_at  <0, 0, -1>\n')
+               file.write('\tright <%s, 0, 0>\n' % -Qsize)
+               file.write('\tup <0, 1, 0>\n')
+               file.write('\tangle  %f \n' % (360.0*atan(16.0/camera.data.lens)/pi))
+               
+               file.write('\trotate  <%.6f, %.6f, %.6f>\n' % tuple([degrees(e) for e in matrix.rotationPart().toEuler()]))
+               file.write('\ttranslate <%.6f, %.6f, %.6f>\n' % (matrix[3][0], matrix[3][1], matrix[3][2]))
+               file.write('}\n')
+       
+       
+       
+       def exportLamps(lamps):
+               # Get all lamps
+               for ob in lamps:
+                       lamp = ob.data
+                       
+                       matrix = ob.matrix
+                       
+                       color = tuple([c * lamp.energy for c in lamp.color]) # Colour is modified by energy
+                       
+                       file.write('light_source')
+                       file.write('{\n')
+                       file.write('\t< 0,0,0 >\n')
+                       file.write('\tcolor red %.6f green %.6f blue %.6f\n' % color)
+                       
+                       if lamp.type == 'POINT': # Point Lamp 
+                               pass
+                       elif lamp.type == 'SPOT': # Spot
+                               file.write('\tspotlight\n')
+                               
+                               # Falloff is the main radius from the centre line
+                               file.write('\tfalloff %.2f\n' % (lamp.spot_size/2.0) ) # 1 TO 179 FOR BOTH
+                               file.write('\tradius %.6f\n' % ((lamp.spot_size/2.0) * (1-lamp.spot_blend)) ) 
+                               
+                               # Blender does not have a tightness equivilent, 0 is most like blender default.
+                               file.write('\ttightness 0\n') # 0:10f
+                               
+                               file.write('\tpoint_at  <0, 0, -1>\n')
+                       elif lamp.type == 'AREA':
+                               
+                               size_x = lamp.size
+                               samples_x = lamp.shadow_ray_samples_x
+                               if lamp.shape == 'SQUARE':
+                                       size_y = size_x
+                                       samples_y = samples_x
+                               else:
+                                       size_y = lamp.size_y
+                                       samples_y = lamp.shadow_ray_samples_y
+                               
+                               
+                               
+                               file.write('\tarea_light <%d,0,0>,<0,0,%d> %d, %d\n' % (size_x, size_y, samples_x, samples_y))
+                               if lamp.shadow_ray_sampling_method == 'CONSTANT_JITTERED':
+                                       if lamp.jitter:
+                                               file.write('\tjitter\n')
+                               else:
+                                       file.write('\tadaptive 1\n')
+                                       file.write('\tjitter\n')
+                       
+                       if lamp.shadow_method == 'NOSHADOW':
+                               file.write('\tshadowless\n')    
+                       
+                       file.write('\tfade_distance %.6f\n' % lamp.distance)
+                       file.write('\tfade_power %d\n' % 1) # Could use blenders lamp quad?
+                       writeMatrix(matrix)
+                       
+                       file.write('}\n')
+       
+       def exportMeshs(sel):
+               def bMat2PovString(material):
+                       povstring = 'finish {'
+                       if world != None:
+                               povstring += 'ambient <%.6f, %.6f, %.6f> ' % tuple([c*material.ambient for c in world.ambient_color])
+                       
+                       povstring += 'diffuse %.6f ' % material.diffuse_reflection
+                       povstring += 'specular %.6f ' % material.specular_reflection
+                       
+                       
+                       if material.raytrace_mirror.enabled:
+                               #povstring += 'interior { ior %.6f } ' % material.IOR
+                               raytrace_mirror= material.raytrace_mirror
+                               if raytrace_mirror.reflect:
+                                       povstring += 'reflection {'
+                                       povstring += '<%.6f, %.6f, %.6f>' % tuple(material.mirror_color) # Should ask for ray mirror flag
+                                       povstring += 'fresnel 1 falloff %.6f exponent %.6f metallic %.6f} ' % (raytrace_mirror.fresnel, raytrace_mirror.fresnel_fac, raytrace_mirror.reflect)
+                               
+                               
+                                       
+                       if material.raytrace_transparency.enabled:
+                               #povstring += 'interior { ior %.6f } ' % material.IOR
+                               pass
+                       
+                       #file.write('\t\troughness %.6f\n' % (material.hard*0.5))
+                       #file.write('\t\t\tcrand 0.0\n') # Sand granyness
+                       #file.write('\t\t\tmetallic %.6f\n' % material.spec)
+                       #file.write('\t\t\tphong %.6f\n' % material.spec)
+                       #file.write('\t\t\tphong_size %.6f\n' % material.spec)
+                       povstring += 'brilliance %.6f ' % (material.specular_hardness/256.0) # Like hardness
+                       povstring += '}'
+                       #file.write('\t}\n')
+                       return povstring
+                       
+               
+               world = scene.world
+               
+               # Convert all materials to strings we can access directly per vertex.
+               for material in bpy.data.materials:
+                       materialTable[material.name] = bMat2PovString(material)
+               
+               
+               ob_num = 0
+               
+               for ob in sel:
+                       ob_num+= 1
+                       
+                       if ob.type in ('LAMP', 'CAMERA', 'EMPTY'):
+                               continue
+                       
+                       me = ob.data
+                       me_materials= me.materials
+                       
+                       me = ob.create_render_mesh(scene)
+                       
+                       if not me:
+                               continue
+                       
+                       if info_callback:
+                               info_callback('Object %2.d of %2.d (%s)' % (ob_num, len(sel), ob.name))
+                       
+                       #if ob.type!='MESH':
+                       #       continue
+                       # me = ob.data
+                       
+                       matrix = ob.matrix
+                       try:    uv_layer = me.active_uv_texture.data
+                       except:uv_layer = None
+                               
+                       try:    vcol_layer = me.active_vertex_color.data
+                       except:vcol_layer = None
+                       
+                       
+                       def regular_face(f):
+                               fv = f.verts
+                               if fv[3]== 0:
+                                       return fv[0], fv[1], fv[2]
+                               return fv[0], fv[1], fv[2], fv[3]
+                       
+                       faces_verts = [regular_face(f) for f in me.faces]
+                       faces_normals = [tuple(f.normal) for f in me.faces]
+                       verts_normals = [tuple(v.normal) for v in me.verts]
+                       
+                       # quads incur an extra face
+                       quadCount = len([f for f in faces_verts if len(f)==4])
+                       
+                       file.write('mesh2 {\n')
+                       file.write('\tvertex_vectors {\n')
+                       file.write('\t\t%s' % (len(me.verts))) # vert count
+                       for v in me.verts:
+                               file.write(',\n\t\t<%.6f, %.6f, %.6f>' % tuple(v.co)) # vert count
+                       file.write('\n  }\n')
+                       
+                       
+                       # Build unique Normal list
+                       uniqueNormals = {}
+                       for fi, f in enumerate(me.faces):
+                               fv = faces_verts[fi]
+                               # [-1] is a dummy index, use a list so we can modify in place
+                               if f.smooth: # Use vertex normals
+                                       for v in fv:
+                                               key = verts_normals[v]
+                                               uniqueNormals[key] = [-1]
+                               else: # Use face normal
+                                       key = faces_normals[fi]
+                                       uniqueNormals[key] = [-1]
+                       
+                       file.write('\tnormal_vectors {\n')
+                       file.write('\t\t%d' % len(uniqueNormals)) # vert count
+                       idx = 0
+                       for no, index in uniqueNormals.items():
+                               file.write(',\n\t\t<%.6f, %.6f, %.6f>' % no) # vert count
+                               index[0] = idx
+                               idx +=1
+                       file.write('\n  }\n')
+                       
+                       
+                       # Vertex colours
+                       vertCols = {} # Use for material colours also.
+                       
+                       if uv_layer:
+                               # Generate unique UV's
+                               uniqueUVs = {}
+                               
+                               for fi, uv in enumerate(uv_layer):
+                                       
+                                       if len(faces_verts[fi])==4:
+                                               uvs = uv.uv1, uv.uv2, uv.uv3, uv.uv4
+                                       else:
+                                               uvs = uv.uv1, uv.uv2, uv.uv3
+                                       
+                                       for uv in uvs:
+                                               uniqueUVs[tuple(uv)] = [-1]
+                               
+                               file.write('\tuv_vectors {\n')
+                               #print unique_uvs
+                               file.write('\t\t%s' % (len(uniqueUVs))) # vert count
+                               idx = 0
+                               for uv, index in uniqueUVs.items():
+                                       file.write(',\n\t\t<%.6f, %.6f>' % uv)
+                                       index[0] = idx
+                                       idx +=1
+                               '''
+                               else:
+                                       # Just add 1 dummy vector, no real UV's
+                                       file.write('\t\t1') # vert count
+                                       file.write(',\n\t\t<0.0, 0.0>')
+                               '''
+                               file.write('\n  }\n')
+                       
+                       
+                       if me.vertex_colors:
+                               
+                               for fi, f in enumerate(me.faces):
+                                       material_index = f.material_index
+                                       material = me_materials[material_index]
+                                       
+                                       if material and material.vertex_color_paint:
+                                               
+                                               col = vcol_layer[fi]
+                                               
+                                               if len(faces_verts[fi])==4:
+                                                       cols = col.color1, col.color2, col.color3, col.color4
+                                               else:
+                                                       cols = col.color1, col.color2, col.color3
+                                               
+                                               for col in cols:                                        
+                                                       key = col[0], col[1], col[2], material_index # Material index!
+                                                       vertCols[key] = [-1]
+                                               
+                                       else:
+                                               if material:
+                                                       diffuse_color = tuple(material.diffuse_color)
+                                                       key = diffuse_color[0], diffuse_color[1], diffuse_color[2], material_index
+                                                       vertCols[key] = [-1]
+                                               
+                       
+                       else:
+                               # No vertex colours, so write material colours as vertex colours
+                               for i, material in enumerate(me_materials):
+                                       
+                                       if material:
+                                               diffuse_color = tuple(material.diffuse_color)
+                                               key = diffuse_color[0], diffuse_color[1], diffuse_color[2], i # i == f.mat
+                                               vertCols[key] = [-1]
+                               
+                       
+                       # Vert Colours
+                       file.write('\ttexture_list {\n')
+                       file.write('\t\t%s' % (len(vertCols))) # vert count
+                       idx=0
+                       for col, index in vertCols.items():
+                               
+                               if me_materials:
+                                       material = me_materials[col[3]]
+                                       materialString = materialTable[material.name]
+                               else:
+                                       materialString = '' # Dont write anything
+                               
+                               float_col = col[0], col[1], col[2], 1-material.alpha, materialString
+                               #print material.apl
+                               file.write(',\n\t\ttexture { pigment {rgbf<%.6f, %.6f, %.6f, %.6f>}%s}' % float_col)
+                               index[0] = idx
+                               idx+=1
+                       
+                       file.write( '\n  }\n' )
+                       
+                       # Face indicies
+                       file.write('\tface_indices {\n')
+                       file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count
+                       for fi, f in enumerate(me.faces):
+                               fv = faces_verts[fi]
+                               material_index= f.material_index
+                               if len(fv) == 4:        indicies = (0,1,2), (0,2,3)
+                               else:                           indicies = ((0,1,2),)
+                               
+                               if vcol_layer:
+                                       col = vcol_layer[fi]
+                                       
+                                       if len(fv) == 4:
+                                               cols = col.color1, col.color2, col.color3, col.color4
+                                       else:
+                                               cols = col.color1, col.color2, col.color3
+                               
+                               
+                               if not me_materials or me_materials[material_index] == None: # No materials
+                                       for i1, i2, i3 in indicies:
+                                               file.write(',\n\t\t<%d,%d,%d>' % (fv[i1], fv[i2], fv[i3])) # vert count
+                               else:
+                                       material = me_materials[material_index]
+                                       for i1, i2, i3 in indicies:
+                                               if me.vertex_colors and material.vertex_color_paint:
+                                                       # Colour per vertex - vertex colour
+                                                       
+                                                       col1 = cols[i1]
+                                                       col2 = cols[i2]
+                                                       col3 = cols[i3]
+                                               
+                                                       ci1 = vertCols[col1[0], col1[1], col1[2], material_index][0]
+                                                       ci2 = vertCols[col2[0], col2[1], col2[2], material_index][0]
+                                                       ci3 = vertCols[col3[0], col3[1], col3[2], material_index][0]
+                                               else:
+                                                       # Colour per material - flat material colour
+                                                       diffuse_color= material.diffuse_color
+                                                       ci1 = ci2 = ci3 = vertCols[diffuse_color[0], diffuse_color[1], diffuse_color[2], f.material_index][0]
+                                               
+                                               file.write(',\n\t\t<%d,%d,%d>, %d,%d,%d' % (fv[i1], fv[i2], fv[i3], ci1, ci2, ci3)) # vert count
+                                       
+                                       
+                                       
+                       file.write('\n  }\n')
+                       
+                       # normal_indices indicies
+                       file.write('\tnormal_indices {\n')
+                       file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count
+                       for fi, f in enumerate(me.faces):
+                               fv = faces_verts[fi]
+                               if len(fv) == 4:        indicies = (0,1,2), (0,2,3)
+                               else:                           indicies = ((0,1,2),)
+                               
+                               for i1, i2, i3 in indicies:
+                                       if f.smooth:
+                                               file.write(',\n\t\t<%d,%d,%d>' %\
+                                               (uniqueNormals[verts_normals[fv[i1]]][0],\
+                                                uniqueNormals[verts_normals[fv[i2]]][0],\
+                                                uniqueNormals[verts_normals[fv[i3]]][0])) # vert count
+                                       else:
+                                               idx = uniqueNormals[faces_normals[fi]][0]
+                                               file.write(',\n\t\t<%d,%d,%d>' % (idx, idx, idx)) # vert count
+                                               
+                                               
+                       file.write('\n  }\n')
+                       
+                       
+                       # normal_indices indicies
+                       
+                       if uv_layer:
+                               file.write('\tuv_indices {\n')
+                               file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count
+                               for f in me.faces:
+                                       fv = faces_verts[fi]
+                                       
+                                       if len(fv) == 4:        indicies = (0,1,2), (0,2,3)
+                                       else:                           indicies = ((0,1,2),)
+                                       
+                                       uv = uv_layer[fi]
+                                       if len(faces_verts[fi])==4:
+                                               uvs = uv.uv1, uv.uv2, uv.uv3, uv.uv4
+                                       else:
+                                               uvs = uv.uv1, uv.uv2, uv.uv3
+                                       
+                                       for i1, i2, i3 in indicies:
+                                               file.write(',\n\t\t<%d,%d,%d>' %\
+                                               (uniqueUVs[tuple(uvs[i1][0:2])][0],\
+                                                uniqueUVs[tuple(uvs[i2][0:2])][0],\
+                                                uniqueUVs[tuple(uvs[i2][0:2])][0])) # vert count
+                               file.write('\n  }\n')
+                       
+                       if me.materials:
+                               material = me.materials[0] # dodgy
+                               if material and material.raytrace_transparency.enabled:
+                                       file.write('\tinterior { ior %.6f }\n' % material.raytrace_transparency.ior)
+                       
+                       writeMatrix(matrix)
+                       file.write('}\n')
+                       
+                       bpy.data.remove_mesh(me)
+       
+       
+       exportCamera()
+       #exportMaterials()
+       sel = scene.objects
+       lamps = [l for l in sel if l.type == 'LAMP']
+       exportLamps(lamps)
+       exportMeshs(sel)
+       
+       file.close()
+
+
+def write_pov_ini(filename_ini, filename_pov, filename_image):
+       scene = bpy.data.scenes[0]
+       render = scene.render_data
+       
+       x= int(render.resolution_x*render.resolution_percentage*0.01)
+       y= int(render.resolution_y*render.resolution_percentage*0.01)
+       
+       file = open(filename_ini, 'w')
+       
+       file.write('Input_File_Name="%s"\n' % filename_pov)
+       file.write('Output_File_Name="%s"\n' % filename_image)
+       
+       file.write('Width=%d\n' % x)
+       file.write('Height=%d\n' % y)
+       
+       # Needed for border render.
+       '''
+       file.write('Start_Column=%d\n' % part.x)
+       file.write('End_Column=%d\n' % (part.x+part.w))
+       
+       file.write('Start_Row=%d\n' % (part.y))
+       file.write('End_Row=%d\n' % (part.y+part.h))
+       '''
+       
+       file.write('Display=0\n')
+       file.write('Pause_When_Done=0\n')
+       file.write('Output_File_Type=C\n') # TGA, best progressive loading
+       file.write('Output_Alpha=1\n')
+       
+       if render.antialiasing: 
+               aa_mapping = {'OVERSAMPLE_5':2, 'OVERSAMPLE_8':3, 'OVERSAMPLE_11':4, 'OVERSAMPLE_16':5} # method 1 assumed
+               file.write('Antialias=1\n')
+               file.write('Antialias_Depth=%d\n' % aa_mapping[render.antialiasing_samples])
+       else:
+               file.write('Antialias=0\n')
+       
+       file.close()
+
+
+class PovrayRenderEngine(bpy.types.RenderEngine):
+       __label__ = "Povray"
+       DELAY = 0.02
+       def _export(self, scene):
+               import tempfile
+               
+               self.temp_file_in = tempfile.mktemp(suffix='.pov')
+               self.temp_file_out = tempfile.mktemp(suffix='.ppm')
+               self.temp_file_ini = tempfile.mktemp(suffix='.ini')
+               
+               def info_callback(txt):
+                       self.update_stats("", "POVRAY: " + txt)
+                       
+               write_pov(self.temp_file_in, scene, info_callback)
+               
+       def _render(self):
+               
+               try:            os.remove(self.temp_file_out) # so as not to load the old file
+               except: pass
+               
+               write_pov_ini(self.temp_file_ini, self.temp_file_in, self.temp_file_out)
+               
+               print ("***-STARTING-***")
+               # This works too but means we have to wait until its done
+               # os.system('povray %s' % self.temp_file_ini)
+               
+               self.process = subprocess.Popen(["povray", self.temp_file_ini]) # stdout=subprocess.PIPE, stderr=subprocess.PIPE
+               print ("***-DONE-***")
+       
+       def _cleanup(self):
+               for f in (self.temp_file_in, self.temp_file_ini, self.temp_file_out):
+                       try:            os.remove(f)
+                       except: pass
+               
+               self.update_stats("", "")
+       
+       def render(self, scene):
+               
+               self.update_stats("", "POVRAY: Exporting data from Blender")
+               self._export(scene)
+               self.update_stats("", "POVRAY: Parsing File")
+               self._render()
+               
+               r = scene.render_data
+               
+               # compute resolution
+               x= int(r.resolution_x*r.resolution_percentage*0.01)
+               y= int(r.resolution_y*r.resolution_percentage*0.01)
+               
+               
+               
+               # Wait for the file to be created
+               while not os.path.exists(self.temp_file_out):
+                       time.sleep(self.DELAY)
+               
+               self.update_stats("", "POVRAY: Rendering")
+               
+               prev_size = -1
+               
+               def update_image():
+                       result = self.begin_result(0, 0, x, y)
+                       lay = result.layers[0]
+                       # possible the image wont load early on.
+                       try:            lay.rect_from_file(self.temp_file_out, 0, 0)
+                       except: pass
+                       self.end_result(result)
+               
+               # Update while povray renders
+               while True:
+                       
+                       # test if povray exists
+                       if self.process.poll() != None:
+                               update_image();
+                               break
+                       
+                       # user exit
+                       if self.test_break():
+                               try: # It might not be running
+                                       self.process.terminate()
+                               except:
+                                       pass
+                               
+                               break
+                       
+                       # Would be nice to redirect the output
+                       # stdout_value, stderr_value = self.process.communicate() # locks
+                       
+                       
+                       # check if the file updated
+                       new_size = os.path.getsize(self.temp_file_out)
+                       
+                       if new_size != prev_size:
+                               update_image()
+                               prev_size = new_size
+                       
+                       time.sleep(self.DELAY)
+               
+               self._cleanup()
+
+
+bpy.types.register(PovrayRenderEngine)