More code cleanup in intern/dualcon.
authorNicholas Bishop <nicholasbishop@gmail.com>
Thu, 10 May 2012 05:12:58 +0000 (05:12 +0000)
committerNicholas Bishop <nicholasbishop@gmail.com>
Thu, 10 May 2012 05:12:58 +0000 (05:12 +0000)
Removed a lot of unused code, added comments and some clearer
naming. Minor code shuffles and style cleanup too.

intern/dualcon/intern/Projections.cpp
intern/dualcon/intern/Projections.h
intern/dualcon/intern/octree.cpp
intern/dualcon/intern/octree.h

index e50065c004d8cee40ad3af1f27753745737be7e7..7e7d5e0081c1c78e4eb27abb5982032530ff5a4f 100644 (file)
@@ -71,3 +71,308 @@ const int facemap[6][4] = {
        {0, 2, 4, 6},
        {1, 3, 5, 7}
 };
+
+/**
+ * Method to perform cross-product
+ */
+static void crossProduct(int64_t res[3], const int64_t a[3], const int64_t b[3])
+{
+       res[0] = a[1] * b[2] - a[2] * b[1];
+       res[1] = a[2] * b[0] - a[0] * b[2];
+       res[2] = a[0] * b[1] - a[1] * b[0];
+}
+
+static void crossProduct(double res[3], const double a[3], const double b[3])
+{
+       res[0] = a[1] * b[2] - a[2] * b[1];
+       res[1] = a[2] * b[0] - a[0] * b[2];
+       res[2] = a[0] * b[1] - a[1] * b[0];
+}
+
+/**
+ * Method to perform dot product
+ */
+int64_t dotProduct(const int64_t a[3], const int64_t b[3])
+{
+       return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
+}
+
+void normalize(double a[3])
+{
+       double mag = a[0] * a[0] + a[1] * a[1] + a[2] * a[2];
+       if (mag > 0) {
+               mag = sqrt(mag);
+               a[0] /= mag;
+               a[1] /= mag;
+               a[2] /= mag;
+       }
+}
+
+/* Create projection axes for cube+triangle intersection testing.
+ *    0, 1, 2: cube face normals
+ *    
+ *          3: triangle normal
+ *          
+ *    4, 5, 6,
+ *    7, 8, 9,
+ * 10, 11, 12: cross of each triangle edge vector with each cube
+ *             face normal
+ */
+static void create_projection_axes(int64_t axes[NUM_AXES][3], const int64_t tri[3][3])
+{
+       /* Cube face normals */
+       axes[0][0] = 1;
+       axes[0][1] = 0;
+       axes[0][2] = 0;
+       axes[1][0] = 0;
+       axes[1][1] = 1;
+       axes[1][2] = 0;
+       axes[2][0] = 0;
+       axes[2][1] = 0;
+       axes[2][2] = 1;
+
+       /* Get triangle edge vectors */
+       int64_t tri_edges[3][3];
+       for (int i = 0; i < 3; i++) {
+               for (int j = 0; j < 3; j++)
+                       tri_edges[i][j] = tri[(i + 1) % 3][j] - tri[i][j];
+       }
+
+       /* Triangle normal */
+       crossProduct(axes[3], tri_edges[0], tri_edges[1]);
+
+       // Face edges and triangle edges
+       int ct = 4;
+       for (int i = 0; i < 3; i++) {
+               for (int j = 0; j < 3; j++) {
+                       crossProduct(axes[ct], axes[j], tri_edges[i]);
+                       ct++;
+               }
+       }
+}
+
+/**
+ * Construction from a cube (axes aligned) and triangle
+ */
+CubeTriangleIsect::CubeTriangleIsect(int64_t cube[2][3], int64_t tri[3][3], int64_t error, int triind)
+{
+       int i;
+       inherit = new TriangleProjection;
+       inherit->index = triind;
+
+       int64_t axes[NUM_AXES][3];
+       create_projection_axes(axes, tri);
+
+       /* Normalize face normal and store */
+       double dedge1[] = {(double)tri[1][0] - (double)tri[0][0],
+                                          (double)tri[1][1] - (double)tri[0][1],
+                                          (double)tri[1][2] - (double)tri[0][2]};
+       double dedge2[] = {(double)tri[2][0] - (double)tri[1][0],
+                                          (double)tri[2][1] - (double)tri[1][1],
+                                          (double)tri[2][2] - (double)tri[1][2]};
+       crossProduct(inherit->norm, dedge1, dedge2);
+       normalize(inherit->norm);
+
+       int64_t cubeedge[3][3];
+       for (i = 0; i < 3; i++) {
+               for (int j = 0; j < 3; j++) {
+                       cubeedge[i][j] = 0;
+               }
+               cubeedge[i][i] = cube[1][i] - cube[0][i];
+       }
+
+       /* Project the cube on to each axis */
+       for (int axis = 0; axis < NUM_AXES; axis++) {
+               CubeProjection &cube_proj = cubeProj[axis];
+
+               /* Origin */
+               cube_proj.origin = dotProduct(axes[axis], cube[0]);
+
+               /* 3 direction vectors */
+               for (i = 0; i < 3; i++)
+                       cube_proj.edges[i] = dotProduct(axes[axis], cubeedge[i]);
+
+               /* Offsets of 2 ends of cube projection */
+               int64_t max = 0;
+               int64_t min = 0;
+               for (i = 1; i < 8; i++) {
+                       int64_t proj = (vertmap[i][0] * cube_proj.edges[0] +
+                                                       vertmap[i][1] * cube_proj.edges[1] +
+                                                       vertmap[i][2] * cube_proj.edges[2]);
+                       if (proj > max) {
+                               max = proj;
+                       }
+                       if (proj < min) {
+                               min = proj;
+                       }
+               }
+               cube_proj.min = min;
+               cube_proj.max = max;
+
+       }
+
+       /* Project the triangle on to each axis */
+       for (int axis = 0; axis < NUM_AXES; axis++) {
+               const int64_t vts[3] = {dotProduct(axes[axis], tri[0]),
+                                                               dotProduct(axes[axis], tri[1]),
+                                                               dotProduct(axes[axis], tri[2])};
+
+               // Triangle
+               inherit->tri_proj[axis][0] = vts[0];
+               inherit->tri_proj[axis][1] = vts[0];
+               for (i = 1; i < 3; i++) {
+                       if (vts[i] < inherit->tri_proj[axis][0])
+                               inherit->tri_proj[axis][0] = vts[i];
+                       
+                       if (vts[i] > inherit->tri_proj[axis][1])
+                               inherit->tri_proj[axis][1] = vts[i];
+               }
+       }
+}
+
+/**
+ * Construction
+ * from a parent CubeTriangleIsect object and the index of the children
+ */
+CubeTriangleIsect::CubeTriangleIsect(CubeTriangleIsect *parent)
+{
+       // Copy inheritable projections
+       this->inherit = parent->inherit;
+
+       // Shrink cube projections
+       for (int i = 0; i < NUM_AXES; i++) {
+               cubeProj[i].origin = parent->cubeProj[i].origin;
+
+               for (int j = 0; j < 3; j++)
+                       cubeProj[i].edges[j] = parent->cubeProj[i].edges[j] >> 1;
+               
+               cubeProj[i].min = parent->cubeProj[i].min >> 1;
+               cubeProj[i].max = parent->cubeProj[i].max >> 1;
+       }
+}
+
+unsigned char CubeTriangleIsect::getBoxMask( )
+{
+       int i, j, k;
+       int bmask[3][2] = {{0, 0}, {0, 0}, {0, 0}};
+       unsigned char boxmask = 0;
+       int64_t child_len = cubeProj[0].edges[0] >> 1;
+
+       for (i = 0; i < 3; i++) {
+               int64_t mid = cubeProj[i].origin + child_len;
+
+               // Check bounding box
+               if (mid >= inherit->tri_proj[i][0]) {
+                       bmask[i][0] = 1;
+               }
+               if (mid <= inherit->tri_proj[i][1]) {
+                       bmask[i][1] = 1;
+               }
+
+       }
+
+       // Fill in masks
+       int ct = 0;
+       for (i = 0; i < 2; i++) {
+               for (j = 0; j < 2; j++) {
+                       for (k = 0; k < 2; k++) {
+                               boxmask |= ( (bmask[0][i] & bmask[1][j] & bmask[2][k]) << ct);
+                               ct++;
+                       }
+               }
+       }
+
+       // Return bounding box masks
+       return boxmask;
+}
+
+
+/**
+ * Shifting a cube to a new origin
+ */
+void CubeTriangleIsect::shift(int off[3])
+{
+       for (int i = 0; i < NUM_AXES; i++) {
+               cubeProj[i].origin += (off[0] * cubeProj[i].edges[0] +
+                                                          off[1] * cubeProj[i].edges[1] +
+                                                          off[2] * cubeProj[i].edges[2]);
+       }
+}
+
+/**
+ * Method to test intersection of the triangle and the cube
+ */
+int CubeTriangleIsect::isIntersecting() const
+{
+       for (int i = 0; i < NUM_AXES; i++) {
+               /*
+                 int64_t proj0 = cubeProj[i][0] +
+                 vertmap[inherit->cubeEnds[i][0]][0] * cubeProj[i][1] +
+                 vertmap[inherit->cubeEnds[i][0]][1] * cubeProj[i][2] +
+                 vertmap[inherit->cubeEnds[i][0]][2] * cubeProj[i][3] ;
+                 int64_t proj1 = cubeProj[i][0] +
+                 vertmap[inherit->cubeEnds[i][1]][0] * cubeProj[i][1] +
+                 vertmap[inherit->cubeEnds[i][1]][1] * cubeProj[i][2] +
+                 vertmap[inherit->cubeEnds[i][1]][2] * cubeProj[i][3] ;
+               */
+
+               int64_t proj0 = cubeProj[i].origin + cubeProj[i].min;
+               int64_t proj1 = cubeProj[i].origin + cubeProj[i].max;
+
+               if (proj0 > inherit->tri_proj[i][1] ||
+                       proj1 < inherit->tri_proj[i][0]) {
+                       return 0;
+               }
+       }
+
+       return 1;
+}
+
+int CubeTriangleIsect::isIntersectingPrimary(int edgeInd) const
+{
+       for (int i = 0; i < NUM_AXES; i++) {
+
+               int64_t proj0 = cubeProj[i].origin;
+               int64_t proj1 = cubeProj[i].origin + cubeProj[i].edges[edgeInd];
+
+               if (proj0 < proj1) {
+                       if (proj0 > inherit->tri_proj[i][1] ||
+                               proj1 < inherit->tri_proj[i][0]) {
+                               return 0;
+                       }
+               }
+               else {
+                       if (proj1 > inherit->tri_proj[i][1] ||
+                               proj0 < inherit->tri_proj[i][0]) {
+                               return 0;
+                       }
+               }
+
+       }
+
+       // printf( "Intersecting: %d %d\n", edgemap[edgeInd][0], edgemap[edgeInd][1] )  ;
+       return 1;
+}
+
+float CubeTriangleIsect::getIntersectionPrimary(int edgeInd) const
+{
+       int i = 3;
+
+
+       int64_t proj0 = cubeProj[i].origin;
+       int64_t proj1 = cubeProj[i].origin + cubeProj[i].edges[edgeInd];
+       int64_t proj2 = inherit->tri_proj[i][1];
+       int64_t d = proj1 - proj0;
+       double alpha;
+
+       if (d == 0)
+               alpha = 0.5;
+       else {
+               alpha = (double)((proj2 - proj0)) / (double)d;
+
+               if (alpha < 0 || alpha > 1)
+                       alpha = 0.5;
+       }
+
+       return (float)alpha;
+}
index 7740b0d16348097e333bfa6289ee1dd0ff536e16..2cc3320f8e4e950324a36ef555bf3c018ed14e2f 100644 (file)
 #if defined(_WIN32) && !defined(__MINGW32__)
 #define isnan(n) _isnan(n)
 #define LONG __int64
+#define int64_t __int64
 #else
 #include <stdint.h>
-#define LONG int64_t
 #endif
-#define UCHAR unsigned char
 
 /**
- * Structures and classes for computing projections of triangles
- * onto separating axes during scan conversion
- *
- * @author Tao Ju
- */
-
+* Structures and classes for computing projections of triangles onto
+* separating axes during scan conversion
+*
+* @author Tao Ju
+*/
 
 extern const int vertmap[8][3];
 extern const int centmap[3][3][3][2];
 extern const int edgemap[12][2];
 extern const int facemap[6][4];
 
+/* Axes:
+ *  0,  1,  2: cube face normals
+ *    
+ *          3: triangle normal
+ *          
+ *  4,  5,  6,
+ *  7,  8,  9,
+ * 10, 11, 12: cross of each triangle edge vector with each cube
+ *             face normal
+ */
+#define NUM_AXES 13
+
 /**
  * Structure for the projections inheritable from parent
  */
-struct InheritableProjections {
-       /// Projections of triangle
-       LONG trigProj[13][2];
-
-       /// Projections of triangle vertices on primary axes
-       LONG trigVertProj[13][3];
-
-       /// Projections of triangle edges
-       LONG trigEdgeProj[13][3][2];
+struct TriangleProjection {
+       /// Projections of triangle (min and max)
+       int64_t tri_proj[NUM_AXES][2];
 
        /// Normal of the triangle
        double norm[3];
-       double normA, normB;
-
-       /// End points along each axis
-       //int cubeEnds[13][2] ;
 
-       /// Error range on each axis
-       /// LONG errorProj[13];
-
-#ifdef CONTAINS_INDEX
        /// Index of polygon
        int index;
-#endif
+};
+
+/* This is a projection for the cube against a single projection
+   axis, see CubeTriangleIsect.cubeProj */
+struct CubeProjection {
+       int64_t origin;
+       int64_t edges[3];
+       int64_t min, max;
 };
 
 
 /**
  * Class for projections of cube / triangle vertices on the separating axes
  */
-class Projections
+class CubeTriangleIsect
 {
 public:
-/// Inheritable portion
-InheritableProjections *inherit;
+       /// Inheritable portion
+       TriangleProjection *inherit;
 
-/// Projections of the cube vertices
-LONG cubeProj[13][6];
+       /// Projections of the cube vertices
+       CubeProjection cubeProj[NUM_AXES];
 
 public:
+       CubeTriangleIsect() {}
 
-Projections( )
-{
-}
-
-/**
- * Construction
- * from a cube (axes aligned) and triangle
- */
-Projections(LONG cube[2][3], LONG trig[3][3], LONG error, int triind)
-{
-       int i, j;
-       inherit = new InheritableProjections;
-#ifdef CONTAINS_INDEX
-       inherit->index = triind;
-#endif
-       /// Create axes
-       LONG axes[13][3];
-
-       // Cube faces
-       axes[0][0] = 1;
-       axes[0][1] = 0;
-       axes[0][2] = 0;
-
-       axes[1][0] = 0;
-       axes[1][1] = 1;
-       axes[1][2] = 0;
-
-       axes[2][0] = 0;
-       axes[2][1] = 0;
-       axes[2][2] = 1;
-
-       // Triangle face
-       LONG trigedge[3][3];
-       for (i = 0; i < 3; i++)
-       {
-               for (j = 0; j < 3; j++)
-               {
-                       trigedge[i][j] = trig[(i + 1) % 3][j] - trig[i][j];
-               }
-       }
-       crossProduct(trigedge[0], trigedge[1], axes[3]);
-
-       /// Normalize face normal and store
-       double dedge1[] = { (double) trig[1][0] - (double) trig[0][0],
-                               (double) trig[1][1] - (double) trig[0][1],
-                               (double) trig[1][2] - (double) trig[0][2] };
-       double dedge2[] = { (double) trig[2][0] - (double) trig[1][0],
-                               (double) trig[2][1] - (double) trig[1][1],
-                               (double) trig[2][2] - (double) trig[1][2] };
-       crossProduct(dedge1, dedge2, inherit->norm);
-       normalize(inherit->norm);
-//             inherit->normA = norm[ 0 ] ;
-//             inherit->normB = norm[ 2 ] > 0 ? norm[ 1 ] : 2 + norm[ 1 ] ;
-
-       // Face edges and triangle edges
-       int ct = 4;
-       for (i = 0; i < 3; i++)
-               for (j = 0; j < 3; j++)
-               {
-                       crossProduct(axes[j], trigedge[i], axes[ct]);
-                       ct++;
-               }
-
-       /// Generate projections
-       LONG cubeedge[3][3];
-       for (i = 0; i < 3; i++)
-       {
-               for (j = 0; j < 3; j++)
-               {
-                       cubeedge[i][j] = 0;
-               }
-               cubeedge[i][i] = cube[1][i] - cube[0][i];
-       }
-
-       for (j = 0; j < 13; j++)
-       {
-               // Origin
-               cubeProj[j][0] = dotProduct(axes[j], cube[0]);
-
-               // 3 direction vectors
-               for (i = 1; i < 4; i++)
-               {
-                       cubeProj[j][i] = dotProduct(axes[j], cubeedge[i - 1]);
-               }
-
-               // Offsets of 2 ends of cube projection
-               LONG max = 0;
-               LONG min = 0;
-               for (i = 1; i < 8; i++)
-               {
-                       LONG proj = vertmap[i][0] * cubeProj[j][1] + vertmap[i][1] * cubeProj[j][2] + vertmap[i][2] * cubeProj[j][3];
-                       if (proj > max)
-                       {
-                               max = proj;
-                       }
-                       if (proj < min)
-                       {
-                               min = proj;
-                       }
-               }
-               cubeProj[j][4] = min;
-               cubeProj[j][5] = max;
-
-       }
-
-       for (j = 0; j < 13; j++)
-       {
-               LONG vts[3] = { dotProduct(axes[j], trig[0]),
-                                   dotProduct(axes[j], trig[1]),
-                                   dotProduct(axes[j], trig[2])  };
-
-               // Vertex
-               inherit->trigVertProj[j][0] = vts[0];
-               inherit->trigVertProj[j][1] = vts[1];
-               inherit->trigVertProj[j][2] = vts[2];
-
-               // Edge
-               for (i = 0; i < 3; i++)
-               {
-                       if (vts[i] < vts[(i + 1) % 3])
-                       {
-                               inherit->trigEdgeProj[j][i][0] = vts[i];
-                               inherit->trigEdgeProj[j][i][1] = vts[(i + 1) % 3];
-                       }
-                       else {
-                               inherit->trigEdgeProj[j][i][1] = vts[i];
-                               inherit->trigEdgeProj[j][i][0] = vts[(i + 1) % 3];
-                       }
-               }
-
-               // Triangle
-               inherit->trigProj[j][0] = vts[0];
-               inherit->trigProj[j][1] = vts[0];
-               for (i = 1; i < 3; i++)
-               {
-                       if (vts[i] < inherit->trigProj[j][0])
-                       {
-                               inherit->trigProj[j][0] = vts[i];
-                       }
-                       if (vts[i] > inherit->trigProj[j][1])
-                       {
-                               inherit->trigProj[j][1] = vts[i];
-                       }
-               }
-       }
-
-}
-
-/**
- * Construction
- * from a parent Projections object and the index of the children
- */
-Projections (Projections *parent)
-{
-       // Copy inheritable projections
-       this->inherit = parent->inherit;
-
-       // Shrink cube projections
-       for (int i = 0; i < 13; i++)
-       {
-               cubeProj[i][0] = parent->cubeProj[i][0];
-               for (int j = 1; j < 6; j++)
-               {
-                       cubeProj[i][j] = parent->cubeProj[i][j] >> 1;
-               }
-       }
-};
-
-Projections (Projections *parent, int box[3], int depth)
-{
-       int mask =  (1 << depth) - 1;
-       int nbox[3] = { box[0] & mask, box[1] & mask, box[2] & mask };
-
-       // Copy inheritable projections
-       this->inherit = parent->inherit;
-
-       // Shrink cube projections
-       for (int i = 0; i < 13; i++)
-       {
-               for (int j = 1; j < 6; j++)
-               {
-                       cubeProj[i][j] = parent->cubeProj[i][j] >> depth;
-               }
-
-               cubeProj[i][0] = parent->cubeProj[i][0] + nbox[0] * cubeProj[i][1] + nbox[1] * cubeProj[i][2] + nbox[2] * cubeProj[i][3];
-       }
-};
-
-/**
- * Testing intersection based on vertex/edge masks
- */
-int getIntersectionMasks(UCHAR cedgemask, UCHAR& edgemask)
-{
-       int i, j;
-       edgemask = cedgemask;
-
-       // Pre-processing
-       /*
-          if ( cvertmask & 1 )
-          {
-           edgemask |= 5 ;
-          }
-          if ( cvertmask & 2 )
-          {
-           edgemask |= 3 ;
-          }
-          if ( cvertmask & 4 )
-          {
-           edgemask |= 6 ;
-          }
-
+       /**
+        * Construction from a cube (axes aligned) and triangle
         */
-
-       // Test axes for edge intersection
-       UCHAR bit = 1;
-       for (j = 0; j < 3; j++)
-       {
-               if (edgemask & bit)
-               {
-                       for (i = 0; i < 13; i++)
-                       {
-                               LONG proj0 = cubeProj[i][0] + cubeProj[i][4];
-                               LONG proj1 = cubeProj[i][0] + cubeProj[i][5];
-
-                               if (proj0 > inherit->trigEdgeProj[i][j][1] ||
-                                   proj1 < inherit->trigEdgeProj[i][j][0])
-                               {
-                                       edgemask &= (~bit);
-                                       break;
-                               }
-                       }
-               }
-               bit <<= 1;
-       }
-
-       /*
-          if ( edgemask != 0 )
-          {
-           printf("%d %d\n", cedgemask, edgemask) ;
-          }
+       CubeTriangleIsect(int64_t cube[2][3], int64_t trig[3][3], int64_t error, int triind);
+       
+       /**
+        * Construction from a parent CubeTriangleIsect object and the index of
+        * the children
         */
+       CubeTriangleIsect(CubeTriangleIsect *parent);
+       
+       unsigned char getBoxMask( );
 
-       // Test axes for triangle intersection
-       if (edgemask)
-       {
-               return 1;
-       }
-
-       for (i = 3; i < 13; i++)
-       {
-               LONG proj0 = cubeProj[i][0] + cubeProj[i][4];
-               LONG proj1 = cubeProj[i][0] + cubeProj[i][5];
-
-               if (proj0 > inherit->trigProj[i][1] ||
-                   proj1 < inherit->trigProj[i][0])
-               {
-                       return 0;
-               }
-       }
-
-       return 1;
-}
-
-/**
- * Retrieving children masks using PRIMARY AXES
- */
-UCHAR getChildrenMasks(UCHAR cvertmask, UCHAR vertmask[8])
-{
-       int i, j, k;
-       int bmask[3][2] = {{0, 0}, {0, 0}, {0, 0}};
-       int vmask[3][3][2] = {{{0, 0}, {0, 0}, {0, 0}}, {{0, 0}, {0, 0}, {0, 0}}, {{0, 0}, {0, 0}, {0, 0}}};
-       UCHAR boxmask = 0;
-       LONG len = cubeProj[0][1] >> 1;
-
-       for (i = 0; i < 3; i++)
-       {
-               LONG mid = cubeProj[i][0] + len;
-
-               // Check bounding box
-               if (mid >= inherit->trigProj[i][0])
-               {
-                       bmask[i][0] = 1;
-               }
-               if (mid <= inherit->trigProj[i][1])
-               {
-                       bmask[i][1] = 1;
-               }
-
-               // Check vertex mask
-               if (cvertmask)
-               {
-                       for (j = 0; j < 3; j++)
-                       {
-                               if (cvertmask & (1 << j) )
-                               {
-                                       // Only check if it's contained this node
-                                       if (mid >= inherit->trigVertProj[i][j])
-                                       {
-                                               vmask[i][j][0] = 1;
-                                       }
-                                       if (mid <= inherit->trigVertProj[i][j])
-                                       {
-                                               vmask[i][j][1] = 1;
-                                       }
-                               }
-                       }
-               }
-
-               /*
-                  // Check edge mask
-                  if ( cedgemask )
-                  {
-                   for ( j = 0 ; j < 3 ; j ++ )
-                   {
-                       if ( cedgemask & ( 1 << j ) )
-                       {
-                           // Only check if it's contained this node
-                           if ( mid >= inherit->trigEdgeProj[i][j][0] )
-                           {
-                               emask[i][j][0] = 1 ;
-                           }
-                           if ( mid <= inherit->trigEdgeProj[i][j][1] )
-                           {
-                               emask[i][j][1] = 1 ;
-                           }
-                       }
-                   }
-                  }
-                */
-
-       }
-
-       // Fill in masks
-       int ct = 0;
-       for (i = 0; i < 2; i++)
-               for (j = 0; j < 2; j++)
-                       for (k = 0; k < 2; k++)
-                       {
-                               boxmask |= ( (bmask[0][i] & bmask[1][j] & bmask[2][k]) << ct);
-                               vertmask[ct] = ((vmask[0][0][i] & vmask[1][0][j] & vmask[2][0][k]) |
-                                               ((vmask[0][1][i] & vmask[1][1][j] & vmask[2][1][k]) << 1) |
-                                               ((vmask[0][2][i] & vmask[1][2][j] & vmask[2][2][k]) << 2) );
-                               /*
-                                  edgemask[ct] = (( emask[0][0][i] & emask[1][0][j] & emask[2][0][k] ) |
-                                              (( emask[0][1][i] & emask[1][1][j] & emask[2][1][k] ) << 1 ) |
-                                              (( emask[0][2][i] & emask[1][2][j] & emask[2][2][k] ) << 2 ) ) ;
-                                  edgemask[ct] = cedgemask ;
-                                */
-                               ct++;
-                       }
-
-       // Return bounding box masks
-       return boxmask;
-}
-
-UCHAR getBoxMask( )
-{
-       int i, j, k;
-       int bmask[3][2] = {{0, 0}, {0, 0}, {0, 0}};
-       UCHAR boxmask = 0;
-       LONG len = cubeProj[0][1] >> 1;
-
-       for (i = 0; i < 3; i++)
-       {
-               LONG mid = cubeProj[i][0] + len;
-
-               // Check bounding box
-               if (mid >= inherit->trigProj[i][0])
-               {
-                       bmask[i][0] = 1;
-               }
-               if (mid <= inherit->trigProj[i][1])
-               {
-                       bmask[i][1] = 1;
-               }
-
-       }
-
-       // Fill in masks
-       int ct = 0;
-       for (i = 0; i < 2; i++)
-               for (j = 0; j < 2; j++)
-                       for (k = 0; k < 2; k++)
-                       {
-                               boxmask |= ( (bmask[0][i] & bmask[1][j] & bmask[2][k]) << ct);
-                               ct++;
-                       }
-
-       // Return bounding box masks
-       return boxmask;
-}
-
-
-/**
- * Get projections for sub-cubes (simple axes)
- */
-void getSubProjectionsSimple(Projections *p[8])
-{
-       // Process the axes cooresponding to the triangle's normal
-       int ind = 3;
-       LONG len = cubeProj[0][1] >> 1;
-       LONG trigproj[3] = { cubeProj[ind][1] >> 1, cubeProj[ind][2] >> 1, cubeProj[ind][3] >> 1 };
-
-       int ct = 0;
-       for (int i = 0; i < 2; i++)
-               for (int j = 0; j < 2; j++)
-                       for (int k = 0; k < 2; k++)
-                       {
-                               p[ct] = new Projections( );
-                               p[ct]->inherit = inherit;
-
-                               p[ct]->cubeProj[0][0] = cubeProj[0][0] + i * len;
-                               p[ct]->cubeProj[1][0] = cubeProj[1][0] + j * len;
-                               p[ct]->cubeProj[2][0] = cubeProj[2][0] + k * len;
-                               p[ct]->cubeProj[0][1] = len;
-
-                               for (int m = 1; m < 4; m++)
-                               {
-                                       p[ct]->cubeProj[ind][m] = trigproj[m - 1];
-                               }
-                               p[ct]->cubeProj[ind][0] = cubeProj[ind][0] + i * trigproj[0] + j * trigproj[1] + k * trigproj[2];
-
-                               ct++;
-                       }
-}
-
-/**
- * Shifting a cube to a new origin
- */
-void shift(int off[3])
-{
-       for (int i = 0; i < 13; i++)
-       {
-               cubeProj[i][0] += off[0] * cubeProj[i][1] + off[1] * cubeProj[i][2] + off[2] * cubeProj[i][3];
-       }
-}
-
-void shiftNoPrimary(int off[3])
-{
-       for (int i = 3; i < 13; i++)
-       {
-               cubeProj[i][0] += off[0] * cubeProj[i][1] + off[1] * cubeProj[i][2] + off[2] * cubeProj[i][3];
-       }
-}
-
-/**
- * Method to test intersection of the triangle and the cube
- */
-int isIntersecting( )
-{
-       for (int i = 0; i < 13; i++)
-       {
-               /*
-                  LONG proj0 = cubeProj[i][0] +
-                   vertmap[inherit->cubeEnds[i][0]][0] * cubeProj[i][1] +
-                   vertmap[inherit->cubeEnds[i][0]][1] * cubeProj[i][2] +
-                   vertmap[inherit->cubeEnds[i][0]][2] * cubeProj[i][3] ;
-                  LONG proj1 = cubeProj[i][0] +
-                   vertmap[inherit->cubeEnds[i][1]][0] * cubeProj[i][1] +
-                   vertmap[inherit->cubeEnds[i][1]][1] * cubeProj[i][2] +
-                   vertmap[inherit->cubeEnds[i][1]][2] * cubeProj[i][3] ;
-                */
-
-               LONG proj0 = cubeProj[i][0] + cubeProj[i][4];
-               LONG proj1 = cubeProj[i][0] + cubeProj[i][5];
-
-               if (proj0 > inherit->trigProj[i][1] ||
-                   proj1 < inherit->trigProj[i][0])
-               {
-                       return 0;
-               }
-       }
-
-       return 1;
-};
-
-int isIntersectingNoPrimary( )
-{
-       for (int i = 3; i < 13; i++)
-       {
-               /*
-                  LONG proj0 = cubeProj[i][0] +
-                   vertmap[inherit->cubeEnds[i][0]][0] * cubeProj[i][1] +
-                   vertmap[inherit->cubeEnds[i][0]][1] * cubeProj[i][2] +
-                   vertmap[inherit->cubeEnds[i][0]][2] * cubeProj[i][3] ;
-                  LONG proj1 = cubeProj[i][0] +
-                   vertmap[inherit->cubeEnds[i][1]][0] * cubeProj[i][1] +
-                   vertmap[inherit->cubeEnds[i][1]][1] * cubeProj[i][2] +
-                   vertmap[inherit->cubeEnds[i][1]][2] * cubeProj[i][3] ;
-                */
-
-               LONG proj0 = cubeProj[i][0] + cubeProj[i][4];
-               LONG proj1 = cubeProj[i][0] + cubeProj[i][5];
-
-               if (proj0 > inherit->trigProj[i][1] ||
-                   proj1 < inherit->trigProj[i][0])
-               {
-                       return 0;
-               }
-       }
-
-       return 1;
-};
-
-/**
- * Method to test intersection of the triangle and one edge
- */
-int isIntersecting(int edgeInd)
-{
-       for (int i = 0; i < 13; i++)
-       {
-
-               LONG proj0 = cubeProj[i][0] +
-                            vertmap[edgemap[edgeInd][0]][0] * cubeProj[i][1] +
-                            vertmap[edgemap[edgeInd][0]][1] * cubeProj[i][2] +
-                            vertmap[edgemap[edgeInd][0]][2] * cubeProj[i][3];
-               LONG proj1 = cubeProj[i][0] +
-                            vertmap[edgemap[edgeInd][1]][0] * cubeProj[i][1] +
-                            vertmap[edgemap[edgeInd][1]][1] * cubeProj[i][2] +
-                            vertmap[edgemap[edgeInd][1]][2] * cubeProj[i][3];
-
-
-               if (proj0 < proj1)
-               {
-                       if (proj0 > inherit->trigProj[i][1] ||
-                           proj1 < inherit->trigProj[i][0])
-                       {
-                               return 0;
-                       }
-               }
-               else {
-                       if (proj1 > inherit->trigProj[i][1] ||
-                           proj0 < inherit->trigProj[i][0])
-                       {
-                               return 0;
-                       }
-               }
-       }
-
-       // printf( "Intersecting: %d %d\n", edgemap[edgeInd][0], edgemap[edgeInd][1] )  ;
-       return 1;
-};
-
-/**
- * Method to test intersection of one triangle edge and one cube face
- */
-int isIntersecting(int edgeInd, int faceInd)
-{
-       for (int i = 0; i < 13; i++)
-       {
-               LONG trigproj0 = inherit->trigVertProj[i][edgeInd];
-               LONG trigproj1 = inherit->trigVertProj[i][(edgeInd + 1) % 3];
-
-               if (trigproj0 < trigproj1)
-               {
-                       int t1 = 1, t2 = 1;
-                       for (int j = 0; j < 4; j++)
-                       {
-                               LONG proj = cubeProj[i][0] +
-                                           vertmap[facemap[faceInd][j]][0] * cubeProj[i][1] +
-                                           vertmap[facemap[faceInd][j]][1] * cubeProj[i][2] +
-                                           vertmap[facemap[faceInd][j]][2] * cubeProj[i][3];
-                               if (proj >= trigproj0)
-                               {
-                                       t1 = 0;
-                               }
-                               if (proj <= trigproj1)
-                               {
-                                       t2 = 0;
-                               }
-                       }
-                       if (t1 || t2)
-                       {
-                               return 0;
-                       }
-               }
-               else {
-                       int t1 = 1, t2 = 1;
-                       for (int j = 0; j < 4; j++)
-                       {
-                               LONG proj = cubeProj[i][0] +
-                                           vertmap[facemap[faceInd][j]][0] * cubeProj[i][1] +
-                                           vertmap[facemap[faceInd][j]][1] * cubeProj[i][2] +
-                                           vertmap[facemap[faceInd][j]][2] * cubeProj[i][3];
-                               if (proj >= trigproj1)
-                               {
-                                       t1 = 0;
-                               }
-                               if (proj <= trigproj0)
-                               {
-                                       t2 = 0;
-                               }
-                       }
-                       if (t1 || t2)
-                       {
-                               return 0;
-                       }
-               }
-       }
-
-       return 1;
-};
-
-
-int isIntersectingPrimary(int edgeInd)
-{
-       for (int i = 0; i < 13; i++)
-       {
-
-               LONG proj0 = cubeProj[i][0];
-               LONG proj1 = cubeProj[i][0] + cubeProj[i][edgeInd + 1];
-
-               if (proj0 < proj1)
-               {
-                       if (proj0 > inherit->trigProj[i][1] ||
-                           proj1 < inherit->trigProj[i][0])
-                       {
-                               return 0;
-                       }
-               }
-               else {
-                       if (proj1 > inherit->trigProj[i][1] ||
-                           proj0 < inherit->trigProj[i][0])
-                       {
-                               return 0;
-                       }
-               }
-
-       }
-
-       // printf( "Intersecting: %d %d\n", edgemap[edgeInd][0], edgemap[edgeInd][1] )  ;
-       return 1;
-};
-
-double getIntersection(int edgeInd)
-{
-       int i = 3;
-
-       LONG proj0 = cubeProj[i][0] +
-                    vertmap[edgemap[edgeInd][0]][0] * cubeProj[i][1] +
-                    vertmap[edgemap[edgeInd][0]][1] * cubeProj[i][2] +
-                    vertmap[edgemap[edgeInd][0]][2] * cubeProj[i][3];
-       LONG proj1 = cubeProj[i][0] +
-                    vertmap[edgemap[edgeInd][1]][0] * cubeProj[i][1] +
-                    vertmap[edgemap[edgeInd][1]][1] * cubeProj[i][2] +
-                    vertmap[edgemap[edgeInd][1]][2] * cubeProj[i][3];
-       LONG proj2 = inherit->trigProj[i][1];
-
-       /*
-          if ( proj0 < proj1 )
-          {
-           if ( proj2 < proj0 || proj2 > proj1 )
-           {
-               return -1 ;
-           }
-          }
-          else
-          {
-           if ( proj2 < proj1 || proj2 > proj0 )
-           {
-               return -1 ;
-           }
-          }
+       /**
+        * Shifting a cube to a new origin
         */
+       void shift(int off[3]);
 
-       double alpha = (double)(proj2 - proj0) / (double)(proj1 - proj0);
-       /*
-          if ( alpha < 0 )
-          {
-           alpha = 0.5 ;
-          }
-          else if ( alpha > 1 )
-          {
-           alpha = 0.5 ;
-          }
+       /**
+        * Method to test intersection of the triangle and the cube
         */
+       int isIntersecting() const;
 
-       return alpha;
-};
-
-float getIntersectionPrimary(int edgeInd)
-{
-       int i = 3;
-
-
-       LONG proj0 = cubeProj[i][0];
-       LONG proj1 = cubeProj[i][0] + cubeProj[i][edgeInd + 1];
-       LONG proj2 = inherit->trigProj[i][1];
-       LONG d = proj1 - proj0;
-       double alpha;
-
-       if (d == 0)
-               alpha = 0.5;
-       else {
-               alpha = (double)((proj2 - proj0)) / (double)d;
-
-               if (alpha < 0 || alpha > 1)
-                       alpha = 0.5;
-       }
-
-       return (float)alpha;
-};
-
-/**
- * Method to perform cross-product
- */
-void crossProduct(LONG a[3], LONG b[3], LONG res[3])
-{
-       res[0] = a[1] * b[2] - a[2] * b[1];
-       res[1] = a[2] * b[0] - a[0] * b[2];
-       res[2] = a[0] * b[1] - a[1] * b[0];
-}
-void crossProduct(double a[3], double b[3], double res[3])
-{
-       res[0] = a[1] * b[2] - a[2] * b[1];
-       res[1] = a[2] * b[0] - a[0] * b[2];
-       res[2] = a[0] * b[1] - a[1] * b[0];
-}
-
-/**
- * Method to perform dot product
- */
-LONG dotProduct(LONG a[3], LONG b[3])
-{
-       return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
-}
-
-void normalize(double a[3])
-{
-       double mag = a[0] * a[0] + a[1] * a[1] + a[2] * a[2];
-       if (mag > 0)
-       {
-               mag = sqrt(mag);
-               a[0] /= mag;
-               a[1] /= mag;
-               a[2] /= mag;
-       }
-}
+       int isIntersectingPrimary(int edgeInd) const;
 
+       float getIntersectionPrimary(int edgeInd) const;
 };
 
 #endif
index c5f50d8af4e4c1fa893f763e9fd3c3d675fe5e97..1ad502b018d897cf3725cf7cee8e0df64e3e82c7 100644 (file)
@@ -113,7 +113,7 @@ void Octree::scanConvert()
        start = clock();
 #endif
 
-       addTrian();
+       addAllTriangles();
        resetMinimalEdges();
        preparePrimalEdgesMask(&root->internal);
 
@@ -257,7 +257,7 @@ void Octree::resetMinimalEdges()
        cellProcParity(root, 0, maxDepth);
 }
 
-void Octree::addTrian()
+void Octree::addAllTriangles()
 {
        Triangle *trian;
        int count = 0;
@@ -273,7 +273,7 @@ void Octree::addTrian()
        while ((trian = reader->getNextTriangle()) != NULL) {
                // Drop triangles
                {
-                       addTrian(trian, count);
+                       addTriangle(trian, count);
                }
                delete trian;
 
@@ -316,48 +316,60 @@ void Octree::addTrian()
        putchar(13);
 }
 
-void Octree::addTrian(Triangle *trian, int triind)
+/* Prepare a triangle for insertion into the octree; call the other
+   addTriangle() to (recursively) build the octree */
+void Octree::addTriangle(Triangle *trian, int triind)
 {
        int i, j;
 
-       // Blowing up the triangle to the grid
-       float mid[3] = {0, 0, 0};
-       for (i = 0; i < 3; i++)
-               for (j = 0; j < 3; j++) {
+       /* Project the triangle's coordinates into the grid */
+       for (i = 0; i < 3; i++) {
+               for (j = 0; j < 3; j++)
                        trian->vt[i][j] = dimen * (trian->vt[i][j] - origin[j]) / range;
-                       mid[j] += trian->vt[i][j] / 3;
-               }
-
-       // Generate projections
-       LONG cube[2][3] = {{0, 0, 0}, {dimen, dimen, dimen}};
-       LONG trig[3][3];
+       }
 
-       for (i = 0; i < 3; i++)
-               for (j = 0; j < 3; j++) {
-                       trig[i][j] = (LONG)(trian->vt[i][j]);
-                       // Perturb end points, if set so
-               }
+       /* Generate projections */
+       int64_t cube[2][3] = {{0, 0, 0}, {dimen, dimen, dimen}};
+       int64_t trig[3][3];
+       for (i = 0; i < 3; i++) {
+               for (j = 0; j < 3; j++)
+                       trig[i][j] = (int64_t)(trian->vt[i][j]);
+       }
 
-       // Add to the octree
-       // int start[3] = {0, 0, 0};
-       LONG errorvec = (LONG)(0);
-       Projections *proj = new Projections(cube, trig, errorvec, triind);
-       root = (Node *)addTrian(&root->internal, proj, maxDepth);
+       /* Add triangle to the octree */
+       int64_t errorvec = (int64_t)(0);
+       CubeTriangleIsect *proj = new CubeTriangleIsect(cube, trig, errorvec, triind);
+       root = (Node *)addTriangle(&root->internal, proj, maxDepth);
 
        delete proj->inherit;
        delete proj;
 }
 
+void print_depth(int height, int maxDepth)
+{
+       for (int i = 0; i < maxDepth - height; i++)
+               printf("  ");
+}
 
-InternalNode *Octree::addTrian(InternalNode *node, Projections *p, int height)
+InternalNode *Octree::addTriangle(InternalNode *node, CubeTriangleIsect *p, int height)
 {
        int i;
-       int vertdiff[8][3] = {{0, 0, 0}, {0, 0, 1}, {0, 1, -1}, {0, 0, 1}, {1, -1, -1}, {0, 0, 1}, {0, 1, -1}, {0, 0, 1}};
-       UCHAR boxmask = p->getBoxMask();
-       Projections *subp = new Projections(p);
-
+       const int vertdiff[8][3] = {
+               {0,  0,  0},
+               {0,  0,  1},
+               {0,  1, -1},
+               {0,  0,  1},
+               {1, -1, -1},
+               {0,  0,  1},
+               {0,  1, -1},
+               {0,  0,  1}};
+       unsigned char boxmask = p->getBoxMask();
+       CubeTriangleIsect *subp = new CubeTriangleIsect(p);
+       
        int count = 0;
        int tempdiff[3] = {0, 0, 0};
+
+       /* Check triangle against each of the input node's children */
        for (i = 0; i < 8; i++) {
                tempdiff[0] += vertdiff[i][0];
                tempdiff[1] += vertdiff[i][1];
@@ -370,30 +382,23 @@ InternalNode *Octree::addTrian(InternalNode *node, Projections *p, int height)
 
                        /* Pruning using intersection test */
                        if (subp->isIntersecting()) {
-                       // if(subp->getIntersectionMasks(cedgemask, edgemask))
                                if (!hasChild(node, i)) {
-                                       if (height == 1) {
+                                       if (height == 1)
                                                node = addLeafChild(node, i, count, createLeaf(0));
-                                       }
-                                       else {
+                                       else
                                                node = addInternalChild(node, i, count, createInternal(0));
-                                       }
                                }
                                Node *chd = getChild(node, count);
 
-                               if (!isLeaf(node, i)) {
-                                       // setChild(node, count, addTrian(chd, subp, height - 1, vertmask[i], edgemask));
-                                       setChild(node, count, (Node *)addTrian(&chd->internal, subp, height - 1));
-                               }
-                               else {
+                               if (node->is_child_leaf(i))
                                        setChild(node, count, (Node *)updateCell(&chd->leaf, subp));
-                               }
+                               else
+                                       setChild(node, count, (Node *)addTriangle(&chd->internal, subp, height - 1));
                        }
                }
 
-               if (hasChild(node, i)) {
+               if (hasChild(node, i))
                        count++;
-               }
        }
 
        delete subp;
@@ -401,7 +406,7 @@ InternalNode *Octree::addTrian(InternalNode *node, Projections *p, int height)
        return node;
 }
 
-LeafNode *Octree::updateCell(LeafNode *node, Projections *p)
+LeafNode *Octree::updateCell(LeafNode *node, CubeTriangleIsect *p)
 {
        int i;
 
@@ -426,13 +431,6 @@ LeafNode *Octree::updateCell(LeafNode *node, Projections *p)
                else {
                        offs[newc] = getEdgeOffsetNormal(node, oldc, a[newc], b[newc], c[newc]);
 
-//                     if(p->isIntersectingPrimary(i))
-                       {
-                               // dc_printf("Multiple intersections!\n");
-
-//                             setPatchEdge(node, i);
-                       }
-
                        oldc++;
                        newc++;
                }
@@ -451,7 +449,7 @@ void Octree::preparePrimalEdgesMask(InternalNode *node)
        int count = 0;
        for (int i = 0; i < 8; i++) {
                if (hasChild(node, i)) {
-                       if (isLeaf(node, i))
+                       if (node->is_child_leaf(i))
                                createPrimalEdgesMask(&getChild(node, count)->leaf);
                        else
                                preparePrimalEdgesMask(&getChild(node, count)->internal);
@@ -495,7 +493,7 @@ Node *Octree::trace(Node *newnode, int *st, int len, int depth, PathList *& path
                        nst[i][j] = st[j] + len * vertmap[i][j];
                }
 
-               if (chd[i] == NULL || isLeaf(&newnode->internal, i)) {
+               if (chd[i] == NULL || newnode->internal.is_child_leaf(i)) {
                        chdpaths[i] = NULL;
                }
                else {
@@ -1411,7 +1409,7 @@ Node *Octree::locateCell(InternalNode *node, int st[3], int len, int ori[3], int
        if (hasChild(node, ind)) {
                int count = getChildCount(node, ind);
                Node *chd = getChild(node, count);
-               if (isLeaf(node, ind)) {
+               if (node->is_child_leaf(ind)) {
                        rleaf = chd;
                        rlen = len;
                }
@@ -2367,7 +2365,7 @@ void Octree::edgeProcContour(Node *node[4], int leaf[4], int depth[4], int maxde
                                        de[j] = depth[j];
                                }
                                else {
-                                       le[j] = isLeaf(&node[j]->internal, c[j]);
+                                       le[j] = node[j]->internal.is_child_leaf(c[j]);
                                        ne[j] = chd[j][c[j]];
                                        de[j] = depth[j] - 1;
                                }
@@ -2410,7 +2408,7 @@ void Octree::faceProcContour(Node *node[2], int leaf[2], int depth[2], int maxde
                                        df[j] = depth[j];
                                }
                                else {
-                                       lf[j] = isLeaf(&node[j]->internal, c[j]);
+                                       lf[j] = node[j]->internal.is_child_leaf(c[j]);
                                        nf[j] = chd[j][c[j]];
                                        df[j] = depth[j] - 1;
                                }
@@ -2436,7 +2434,7 @@ void Octree::faceProcContour(Node *node[2], int leaf[2], int depth[2], int maxde
                                        de[j] = depth[order[j]];
                                }
                                else {
-                                       le[j] = isLeaf(&node[order[j]]->internal, c[j]);
+                                       le[j] = node[order[j]]->internal.is_child_leaf(c[j]);
                                        ne[j] = chd[order[j]][c[j]];
                                        de[j] = depth[order[j]] - 1;
                                }
@@ -2467,7 +2465,7 @@ void Octree::cellProcContour(Node *node, int leaf, int depth)
 
                // 8 Cell calls
                for (i = 0; i < 8; i++) {
-                       cellProcContour(chd[i], isLeaf(&node->internal, i), depth - 1);
+                       cellProcContour(chd[i], node->internal.is_child_leaf(i), depth - 1);
                }
 
                // 12 face calls
@@ -2477,8 +2475,8 @@ void Octree::cellProcContour(Node *node, int leaf, int depth)
                for (i = 0; i < 12; i++) {
                        int c[2] = {cellProcFaceMask[i][0], cellProcFaceMask[i][1]};
 
-                       lf[0] = isLeaf(&node->internal, c[0]);
-                       lf[1] = isLeaf(&node->internal, c[1]);
+                       lf[0] = node->internal.is_child_leaf(c[0]);
+                       lf[1] = node->internal.is_child_leaf(c[1]);
 
                        nf[0] = chd[c[0]];
                        nf[1] = chd[c[1]];
@@ -2494,7 +2492,7 @@ void Octree::cellProcContour(Node *node, int leaf, int depth)
                        int c[4] = {cellProcEdgeMask[i][0], cellProcEdgeMask[i][1], cellProcEdgeMask[i][2], cellProcEdgeMask[i][3]};
 
                        for (int j = 0; j < 4; j++) {
-                               le[j] = isLeaf(&node->internal, c[j]);
+                               le[j] = node->internal.is_child_leaf(c[j]);
                                ne[j] = chd[c[j]];
                        }
 
@@ -2563,7 +2561,7 @@ void Octree::edgeProcParity(Node *node[4], int leaf[4], int depth[4], int maxdep
                                        de[j] = depth[j];
                                }
                                else {
-                                       le[j] = isLeaf(&node[j]->internal, c[j]);
+                                       le[j] = node[j]->internal.is_child_leaf(c[j]);
                                        ne[j] = chd[j][c[j]];
                                        de[j] = depth[j] - 1;
 
@@ -2608,7 +2606,7 @@ void Octree::faceProcParity(Node *node[2], int leaf[2], int depth[2], int maxdep
                                        df[j] = depth[j];
                                }
                                else {
-                                       lf[j] = isLeaf(&node[j]->internal, c[j]);
+                                       lf[j] = node[j]->internal.is_child_leaf(c[j]);
                                        nf[j] = chd[j][c[j]];
                                        df[j] = depth[j] - 1;
                                }
@@ -2634,7 +2632,7 @@ void Octree::faceProcParity(Node *node[2], int leaf[2], int depth[2], int maxdep
                                        de[j] = depth[order[j]];
                                }
                                else {
-                                       le[j] = isLeaf((InternalNode *)(node[order[j]]), c[j]);
+                                       le[j] = node[order[j]]->internal.is_child_leaf(c[j]);
                                        ne[j] = chd[order[j]][c[j]];
                                        de[j] = depth[order[j]] - 1;
                                }
@@ -2665,7 +2663,7 @@ void Octree::cellProcParity(Node *node, int leaf, int depth)
 
                // 8 Cell calls
                for (i = 0; i < 8; i++) {
-                       cellProcParity(chd[i], isLeaf((InternalNode *)node, i), depth - 1);
+                       cellProcParity(chd[i], node->internal.is_child_leaf(i), depth - 1);
                }
 
                // 12 face calls
@@ -2675,8 +2673,8 @@ void Octree::cellProcParity(Node *node, int leaf, int depth)
                for (i = 0; i < 12; i++) {
                        int c[2] = {cellProcFaceMask[i][0], cellProcFaceMask[i][1]};
 
-                       lf[0] = isLeaf((InternalNode *)node, c[0]);
-                       lf[1] = isLeaf((InternalNode *)node, c[1]);
+                       lf[0] = node->internal.is_child_leaf(c[0]);
+                       lf[1] = node->internal.is_child_leaf(c[1]);
 
                        nf[0] = chd[c[0]];
                        nf[1] = chd[c[1]];
@@ -2692,7 +2690,7 @@ void Octree::cellProcParity(Node *node, int leaf, int depth)
                        int c[4] = {cellProcEdgeMask[i][0], cellProcEdgeMask[i][1], cellProcEdgeMask[i][2], cellProcEdgeMask[i][3]};
 
                        for (int j = 0; j < 4; j++) {
-                               le[j] = isLeaf((InternalNode *)node, c[j]);
+                               le[j] = node->internal.is_child_leaf(c[j]);
                                ne[j] = chd[c[j]];
                        }
 
index 35d24a074bb7b2500730cae4771ea2c9dd54e90a..550d584baa74e221a9d0721ec32fdf6eacde5f30 100644 (file)
@@ -65,6 +65,12 @@ struct InternalNode {
 
        /* Can have up to eight children */
        Node *children[0];
+
+       /// Test if child is leaf
+       int is_child_leaf(int index) const
+       {
+               return (child_is_leaf >> index) & 1;
+       }
 };
 
 
@@ -145,1277 +151,1202 @@ struct PathList {
  */
 class Octree
 {
-public:
-/* Public members */
-
-/// Memory allocators
-VirtualMemoryAllocator *alloc[9];
-VirtualMemoryAllocator *leafalloc[4];
+ public:
+       /* Public members */
 
-/// Root node
-Node *root;
+       /// Memory allocators
+       VirtualMemoryAllocator *alloc[9];
+       VirtualMemoryAllocator *leafalloc[4];
 
-/// Model reader
-ModelReader *reader;
+       /// Root node
+       Node *root;
 
-/// Marching cubes table
-Cubes *cubes;
+       /// Model reader
+       ModelReader *reader;
 
-/// Length of grid
-int dimen;
-int mindimen, minshift;
+       /// Marching cubes table
+       Cubes *cubes;
 
-/// Maximum depth
-int maxDepth;
+       /// Length of grid
+       int dimen;
+       int mindimen, minshift;
 
-/// The lower corner of the bounding box and the size
-float origin[3];
-float range;
+       /// Maximum depth
+       int maxDepth;
 
-/// Counting information
-int nodeCount;
-int nodeSpace;
-int nodeCounts[9];
+       /// The lower corner of the bounding box and the size
+       float origin[3];
+       float range;
 
-int actualQuads, actualVerts;
+       /// Counting information
+       int nodeCount;
+       int nodeSpace;
+       int nodeCounts[9];
 
-PathList *ringList;
+       int actualQuads, actualVerts;
 
-int maxTrianglePerCell;
-int outType;     // 0 for OFF, 1 for PLY, 2 for VOL
+       PathList *ringList;
 
-// For flood filling
-int use_flood_fill;
-float thresh;
+       int maxTrianglePerCell;
+       int outType;     // 0 for OFF, 1 for PLY, 2 for VOL
 
-int use_manifold;
+       // For flood filling
+       int use_flood_fill;
+       float thresh;
 
-float hermite_num;
+       int use_manifold;
 
-DualConMode mode;
-
-public:
-/**
- * Construtor
- */
-Octree(ModelReader *mr,
-       DualConAllocOutput alloc_output_func,
-       DualConAddVert add_vert_func,
-       DualConAddQuad add_quad_func,
-       DualConFlags flags, DualConMode mode, int depth,
-       float threshold, float hermite_num);
-
-/**
- * Destructor
- */
-~Octree();
-
-/**
- * Scan convert
- */
-void scanConvert();
+       float hermite_num;
 
-void *getOutputMesh() {
-       return output_mesh;
-}
+       DualConMode mode;
 
-private:
-/* Helper functions */
-
-/**
- * Initialize memory allocators
- */
-void initMemory();
-
-/**
- * Release memory
- */
-void freeMemory();
-
-/**
- * Print memory usage
- */
-void printMemUsage();
+ public:
+       /**
+        * Construtor
+        */
+       Octree(ModelReader *mr,
+                  DualConAllocOutput alloc_output_func,
+                  DualConAddVert add_vert_func,
+                  DualConAddQuad add_quad_func,
+                  DualConFlags flags, DualConMode mode, int depth,
+                  float threshold, float hermite_num);
+
+       /**
+        * Destructor
+        */
+       ~Octree();
 
+       /**
+        * Scan convert
+        */
+       void scanConvert();
 
-/**
- * Methods to set / restore minimum edges
- */
-void resetMinimalEdges();
+       void *getOutputMesh() {
+               return output_mesh;
+       }
 
-void cellProcParity(Node *node, int leaf, int depth);
-void faceProcParity(Node * node[2], int leaf[2], int depth[2], int maxdep, int dir);
-void edgeProcParity(Node * node[4], int leaf[4], int depth[4], int maxdep, int dir);
+ private:
+       /* Helper functions */
 
-void processEdgeParity(LeafNode * node[4], int depths[4], int maxdep, int dir);
+       /**
+        * Initialize memory allocators
+        */
+       void initMemory();
 
-/**
- * Add triangles to the tree
- */
-void addTrian();
-void addTrian(Triangle *trian, int triind);
-InternalNode *addTrian(InternalNode *node, Projections *p, int height);
+       /**
+        * Release memory
+        */
+       void freeMemory();
 
-/**
- * Method to update minimizer in a cell: update edge intersections instead
- */
-LeafNode *updateCell(LeafNode *node, Projections *p);
+       /**
+        * Print memory usage
       */
+       void printMemUsage();
 
-/* Routines to detect and patch holes */
-int numRings;
-int totRingLengths;
-int maxRingLength;
 
-/**
- * Entry routine.
- */
-void trace();
-/**
- * Trace the given node, find patches and fill them in
- */
-Node *trace(Node *node, int *st, int len, int depth, PathList *& paths);
-/**
- * Look for path on the face and add to paths
- */
-void findPaths(Node * node[2], int leaf[2], int depth[2], int *st[2], int maxdep, int dir, PathList * &paths);
-/**
- * Combine two list1 and list2 into list1 using connecting paths list3,
- * while closed paths are appended to rings
- */
-void combinePaths(PathList *& list1, PathList *list2, PathList *paths, PathList *& rings);
-/**
- * Helper function: combine current paths in list1 and list2 to a single path and append to list3
- */
-PathList *combineSinglePath(PathList *& head1, PathList *pre1, PathList *& list1, PathList *& head2, PathList *pre2, PathList *& list2);
+       /**
+        * Methods to set / restore minimum edges
+        */
+       void resetMinimalEdges();
 
-/**
- * Functions to patch rings in a node
- */
-Node *patch(Node * node, int st[3], int len, PathList * rings);
-Node *patchSplit(Node * node, int st[3], int len, PathList * rings, int dir, PathList * &nrings1, PathList * &nrings2);
-Node *patchSplitSingle(Node * node, int st[3], int len, PathElement * head, int dir, PathList * &nrings1, PathList * &nrings2);
-Node *connectFace(Node * node, int st[3], int len, int dir, PathElement * f1, PathElement * f2);
-Node *locateCell(InternalNode * node, int st[3], int len, int ori[3], int dir, int side, Node * &rleaf, int rst[3], int& rlen);
-void compressRing(PathElement *& ring);
-void getFacePoint(PathElement *leaf, int dir, int& x, int& y, float& p, float& q);
-LeafNode *patchAdjacent(InternalNode * node, int len, int st1[3], LeafNode * leaf1, int st2[3], LeafNode * leaf2, int walkdir, int inc, int dir, int side, float alpha);
-int findPair(PathElement *head, int pos, int dir, PathElement *& pre1, PathElement *& pre2);
-int getSide(PathElement *e, int pos, int dir);
-int isEqual(PathElement *e1, PathElement *e2);
-void preparePrimalEdgesMask(InternalNode *node);
-void testFacePoint(PathElement *e1, PathElement *e2);
+       void cellProcParity(Node *node, int leaf, int depth);
+       void faceProcParity(Node * node[2], int leaf[2], int depth[2], int maxdep, int dir);
+       void edgeProcParity(Node * node[4], int leaf[4], int depth[4], int maxdep, int dir);
 
-/**
- * Path-related functions
- */
-void deletePath(PathList *& head, PathList *pre, PathList *& curr);
-void printPath(PathList *path);
-void printPath(PathElement *path);
-void printElement(PathElement *ele);
-void printPaths(PathList *path);
-void checkElement(PathElement *ele);
-void checkPath(PathElement *path);
+       void processEdgeParity(LeafNode * node[4], int depths[4], int maxdep, int dir);
 
+       /**
+        * Add triangles to the tree
+        */
+       void addAllTriangles();
+       void addTriangle(Triangle *trian, int triind);
+       InternalNode *addTriangle(InternalNode *node, CubeTriangleIsect *p, int height);
 
-/**
- * Routines to build signs to create a partitioned volume
- *(after patching rings)
- */
-void buildSigns();
-void buildSigns(unsigned char table[], Node * node, int isLeaf, int sg, int rvalue[8]);
+       /**
+        * Method to update minimizer in a cell: update edge intersections instead
+        */
+       LeafNode *updateCell(LeafNode *node, CubeTriangleIsect *p);
 
-/************************************************************************/
-/* To remove disconnected components */
-/************************************************************************/
-void floodFill();
-void clearProcessBits(Node *node, int height);
-int floodFill(LeafNode * leaf, int st[3], int len, int height, int threshold);
-int floodFill(Node * node, int st[3], int len, int height, int threshold);
+       /* Routines to detect and patch holes */
+       int numRings;
+       int totRingLengths;
+       int maxRingLength;
 
-/**
- * Write out polygon file
- */
-void writeOut();
+       /**
+        * Entry routine.
+        */
+       void trace();
+       /**
+        * Trace the given node, find patches and fill them in
+        */
+       Node *trace(Node *node, int *st, int len, int depth, PathList *& paths);
+       /**
+        * Look for path on the face and add to paths
+        */
+       void findPaths(Node * node[2], int leaf[2], int depth[2], int *st[2], int maxdep, int dir, PathList * &paths);
+       /**
+        * Combine two list1 and list2 into list1 using connecting paths list3,
+        * while closed paths are appended to rings
+        */
+       void combinePaths(PathList *& list1, PathList *list2, PathList *paths, PathList *& rings);
+       /**
+        * Helper function: combine current paths in list1 and list2 to a single path and append to list3
+        */
+       PathList *combineSinglePath(PathList *& head1, PathList *pre1, PathList *& list1, PathList *& head2, PathList *pre2, PathList *& list2);
 
-void countIntersection(Node *node, int height, int& nedge, int& ncell, int& nface);
-void generateMinimizer(Node * node, int st[3], int len, int height, int& offset);
-void computeMinimizer(LeafNode * leaf, int st[3], int len, float rvalue[3]);
-/**
- * Traversal functions to generate polygon model
- * op: 0 for counting, 1 for writing OBJ, 2 for writing OFF, 3 for writing PLY
- */
-void cellProcContour(Node *node, int leaf, int depth);
-void faceProcContour(Node * node[2], int leaf[2], int depth[2], int maxdep, int dir);
-void edgeProcContour(Node * node[4], int leaf[4], int depth[4], int maxdep, int dir);
-void processEdgeWrite(Node * node[4], int depths[4], int maxdep, int dir);
-
-/* output callbacks/data */
-DualConAllocOutput alloc_output;
-DualConAddVert add_vert;
-DualConAddQuad add_quad;
-void *output_mesh;
-
-private:
-/************ Operators for all nodes ************/
-
-/// Lookup table
-int numChildrenTable[256];
-int childrenCountTable[256][8];
-int childrenIndexTable[256][8];
-int numEdgeTable[8];
-int edgeCountTable[8][3];
-
-/// Build up lookup table
-void buildTable()
-{
-       for (int i = 0; i < 256; i++)
+       /**
+        * Functions to patch rings in a node
+        */
+       Node *patch(Node * node, int st[3], int len, PathList * rings);
+       Node *patchSplit(Node * node, int st[3], int len, PathList * rings, int dir, PathList * &nrings1, PathList * &nrings2);
+       Node *patchSplitSingle(Node * node, int st[3], int len, PathElement * head, int dir, PathList * &nrings1, PathList * &nrings2);
+       Node *connectFace(Node * node, int st[3], int len, int dir, PathElement * f1, PathElement * f2);
+       Node *locateCell(InternalNode * node, int st[3], int len, int ori[3], int dir, int side, Node * &rleaf, int rst[3], int& rlen);
+       void compressRing(PathElement *& ring);
+       void getFacePoint(PathElement *leaf, int dir, int& x, int& y, float& p, float& q);
+       LeafNode *patchAdjacent(InternalNode * node, int len, int st1[3], LeafNode * leaf1, int st2[3], LeafNode * leaf2, int walkdir, int inc, int dir, int side, float alpha);
+       int findPair(PathElement *head, int pos, int dir, PathElement *& pre1, PathElement *& pre2);
+       int getSide(PathElement *e, int pos, int dir);
+       int isEqual(PathElement *e1, PathElement *e2);
+       void preparePrimalEdgesMask(InternalNode *node);
+       void testFacePoint(PathElement *e1, PathElement *e2);
+
+       /**
+        * Path-related functions
+        */
+       void deletePath(PathList *& head, PathList *pre, PathList *& curr);
+       void printPath(PathList *path);
+       void printPath(PathElement *path);
+       void printElement(PathElement *ele);
+       void printPaths(PathList *path);
+       void checkElement(PathElement *ele);
+       void checkPath(PathElement *path);
+
+
+       /**
+        * Routines to build signs to create a partitioned volume
+        *(after patching rings)
+        */
+       void buildSigns();
+       void buildSigns(unsigned char table[], Node * node, int isLeaf, int sg, int rvalue[8]);
+
+       /************************************************************************/
+       /* To remove disconnected components */
+       /************************************************************************/
+       void floodFill();
+       void clearProcessBits(Node *node, int height);
+       int floodFill(LeafNode * leaf, int st[3], int len, int height, int threshold);
+       int floodFill(Node * node, int st[3], int len, int height, int threshold);
+
+       /**
+        * Write out polygon file
+        */
+       void writeOut();
+
+       void countIntersection(Node *node, int height, int& nedge, int& ncell, int& nface);
+       void generateMinimizer(Node * node, int st[3], int len, int height, int& offset);
+       void computeMinimizer(LeafNode * leaf, int st[3], int len, float rvalue[3]);
+       /**
+        * Traversal functions to generate polygon model
+        * op: 0 for counting, 1 for writing OBJ, 2 for writing OFF, 3 for writing PLY
+        */
+       void cellProcContour(Node *node, int leaf, int depth);
+       void faceProcContour(Node * node[2], int leaf[2], int depth[2], int maxdep, int dir);
+       void edgeProcContour(Node * node[4], int leaf[4], int depth[4], int maxdep, int dir);
+       void processEdgeWrite(Node * node[4], int depths[4], int maxdep, int dir);
+
+       /* output callbacks/data */
+       DualConAllocOutput alloc_output;
+       DualConAddVert add_vert;
+       DualConAddQuad add_quad;
+       void *output_mesh;
+
+ private:
+       /************ Operators for all nodes ************/
+
+       /// Lookup table
+       int numChildrenTable[256];
+       int childrenCountTable[256][8];
+       int childrenIndexTable[256][8];
+       int numEdgeTable[8];
+       int edgeCountTable[8][3];
+
+       /// Build up lookup table
+       void buildTable()
        {
-               numChildrenTable[i] = 0;
-               int count = 0;
-               for (int j = 0; j < 8; j++)
-               {
-                       numChildrenTable[i] += ((i >> j) & 1);
-                       childrenCountTable[i][j] = count;
-                       childrenIndexTable[i][count] = j;
-                       count += ((i >> j) & 1);
+               for (int i = 0; i < 256; i++) {
+                       numChildrenTable[i] = 0;
+                       int count = 0;
+                       for (int j = 0; j < 8; j++) {
+                               numChildrenTable[i] += ((i >> j) & 1);
+                               childrenCountTable[i][j] = count;
+                               childrenIndexTable[i][count] = j;
+                               count += ((i >> j) & 1);
+                       }
                }
-       }
 
-       for (int i = 0; i < 8; i++)
-       {
-               numEdgeTable[i] = 0;
-               int count = 0;
-               for (int j = 0; j < 3; j++)
-               {
-                       numEdgeTable[i] += ((i >> j) & 1);
-                       edgeCountTable[i][j] = count;
-                       count += ((i >> j) & 1);
+               for (int i = 0; i < 8; i++) {
+                       numEdgeTable[i] = 0;
+                       int count = 0;
+                       for (int j = 0; j < 3; j++) {
+                               numEdgeTable[i] += ((i >> j) & 1);
+                               edgeCountTable[i][j] = count;
+                               count += ((i >> j) & 1);
+                       }
                }
        }
-}
 
-int getSign(Node *node, int height, int index)
-{
-       if (height == 0)
+       int getSign(Node *node, int height, int index)
        {
-               return getSign(&node->leaf, index);
-       }
-       else {
-               if (hasChild(&node->internal, index))
-               {
-                       return getSign(getChild(&node->internal, getChildCount(&node->internal, index)),
-                                      height - 1,
-                                      index);
+               if (height == 0) {
+                       return getSign(&node->leaf, index);
                }
                else {
-                       return getSign(getChild(&node->internal, 0),
-                                      height - 1,
-                                      7 - getChildIndex(&node->internal, 0));
+                       if (hasChild(&node->internal, index)) {
+                               return getSign(getChild(&node->internal, getChildCount(&node->internal, index)),
+                                                          height - 1,
+                                                          index);
+                       }
+                       else {
+                               return getSign(getChild(&node->internal, 0),
+                                                          height - 1,
+                                                          7 - getChildIndex(&node->internal, 0));
+                       }
                }
        }
-}
 
-/************ Operators for leaf nodes ************/
+       /************ Operators for leaf nodes ************/
 
-void printInfo(int st[3])
-{
-       printf("INFO AT: %d %d %d\n", st[0] >> minshift, st[1] >> minshift, st[2] >> minshift);
-       LeafNode *leaf = (LeafNode *)locateLeafCheck(st);
-       if (leaf)
-               printInfo(leaf);
-       else
-               printf("Leaf not exists!\n");
-}
-
-void printInfo(const LeafNode *leaf)
-{
-       /*
-          printf("Edge mask: ");
-          for(int i = 0; i < 12; i ++)
-          {
-           printf("%d ", getEdgeParity(leaf, i));
-          }
-          printf("\n");
-          printf("Stored edge mask: ");
-          for(i = 0; i < 3; i ++)
-          {
-           printf("%d ", getStoredEdgesParity(leaf, i));
-          }
-          printf("\n");
-        */
-       printf("Sign mask: ");
-       for (int i = 0; i < 8; i++)
+       void printInfo(int st[3])
        {
-               printf("%d ", getSign(leaf, i));
+               printf("INFO AT: %d %d %d\n", st[0] >> minshift, st[1] >> minshift, st[2] >> minshift);
+               LeafNode *leaf = (LeafNode *)locateLeafCheck(st);
+               if (leaf)
+                       printInfo(leaf);
+               else
+                       printf("Leaf not exists!\n");
        }
-       printf("\n");
-
-}
 
-/// Retrieve signs
-int getSign(const LeafNode *leaf, int index)
-{
-       return ((leaf->signs >> index) & 1);
-}
-
-/// Set sign
-void setSign(LeafNode *leaf, int index)
-{
-       leaf->signs |= (1 << index);
-}
+       void printInfo(const LeafNode *leaf)
+       {
+               /*
+                 printf("Edge mask: ");
+                 for(int i = 0; i < 12; i ++)
+                 {
+                 printf("%d ", getEdgeParity(leaf, i));
+                 }
+                 printf("\n");
+                 printf("Stored edge mask: ");
+                 for(i = 0; i < 3; i ++)
+                 {
+                 printf("%d ", getStoredEdgesParity(leaf, i));
+                 }
+                 printf("\n");
+               */
+               printf("Sign mask: ");
+               for (int i = 0; i < 8; i++) {
+                       printf("%d ", getSign(leaf, i));
+               }
+               printf("\n");
 
-void setSign(LeafNode *leaf, int index, int sign)
-{
-       leaf->signs &= (~(1 << index));
-       leaf->signs |= ((sign & 1) << index);
-}
+       }
 
-int getSignMask(const LeafNode *leaf)
-{
-       return leaf->signs;
-}
+       /// Retrieve signs
+       int getSign(const LeafNode *leaf, int index)
+       {
+               return ((leaf->signs >> index) & 1);
+       }
 
-void setInProcessAll(int st[3], int dir)
-{
-       int nst[3], eind;
-       for (int i = 0; i < 4; i++)
+       /// Set sign
+       void setSign(LeafNode *leaf, int index)
        {
-               nst[0] = st[0] + dirCell[dir][i][0] * mindimen;
-               nst[1] = st[1] + dirCell[dir][i][1] * mindimen;
-               nst[2] = st[2] + dirCell[dir][i][2] * mindimen;
-               eind = dirEdge[dir][i];
+               leaf->signs |= (1 << index);
+       }
 
-               LeafNode *cell = locateLeafCheck(nst);
-               assert(cell);
+       void setSign(LeafNode *leaf, int index, int sign)
+       {
+               leaf->signs &= (~(1 << index));
+               leaf->signs |= ((sign & 1) << index);
+       }
 
-               setInProcess(cell, eind);
+       int getSignMask(const LeafNode *leaf)
+       {
+               return leaf->signs;
        }
-}
 
-void flipParityAll(int st[3], int dir)
-{
-       int nst[3], eind;
-       for (int i = 0; i < 4; i++)
+       void setInProcessAll(int st[3], int dir)
        {
-               nst[0] = st[0] + dirCell[dir][i][0] * mindimen;
-               nst[1] = st[1] + dirCell[dir][i][1] * mindimen;
-               nst[2] = st[2] + dirCell[dir][i][2] * mindimen;
-               eind = dirEdge[dir][i];
+               int nst[3], eind;
+               for (int i = 0; i < 4; i++) {
+                       nst[0] = st[0] + dirCell[dir][i][0] * mindimen;
+                       nst[1] = st[1] + dirCell[dir][i][1] * mindimen;
+                       nst[2] = st[2] + dirCell[dir][i][2] * mindimen;
+                       eind = dirEdge[dir][i];
+
+                       LeafNode *cell = locateLeafCheck(nst);
+                       assert(cell);
 
-               LeafNode *cell = locateLeaf(nst);
-               flipEdge(cell, eind);
+                       setInProcess(cell, eind);
+               }
        }
-}
 
-void setInProcess(LeafNode *leaf, int eind)
-{
-       assert(eind >= 0 && eind <= 11);
+       void flipParityAll(int st[3], int dir)
+       {
+               int nst[3], eind;
+               for (int i = 0; i < 4; i++) {
+                       nst[0] = st[0] + dirCell[dir][i][0] * mindimen;
+                       nst[1] = st[1] + dirCell[dir][i][1] * mindimen;
+                       nst[2] = st[2] + dirCell[dir][i][2] * mindimen;
+                       eind = dirEdge[dir][i];
+
+                       LeafNode *cell = locateLeaf(nst);
+                       flipEdge(cell, eind);
+               }
+       }
 
-       leaf->flood_fill |= (1 << eind);
-}
+       void setInProcess(LeafNode *leaf, int eind)
+       {
+               assert(eind >= 0 && eind <= 11);
 
-void setOutProcess(LeafNode *leaf, int eind)
-{
-       assert(eind >= 0 && eind <= 11);
+               leaf->flood_fill |= (1 << eind);
+       }
 
-       leaf->flood_fill &= ~(1 << eind);
-}
+       void setOutProcess(LeafNode *leaf, int eind)
+       {
+               assert(eind >= 0 && eind <= 11);
 
-int isInProcess(LeafNode *leaf, int eind)
-{
-       assert(eind >= 0 && eind <= 11);
+               leaf->flood_fill &= ~(1 << eind);
+       }
 
-       return (leaf->flood_fill >> eind) & 1;
-}
+       int isInProcess(LeafNode *leaf, int eind)
+       {
+               assert(eind >= 0 && eind <= 11);
 
-/// Generate signs at the corners from the edge parity
-void generateSigns(LeafNode *leaf, unsigned char table[], int start)
-{
-       leaf->signs = table[leaf->edge_parity];
+               return (leaf->flood_fill >> eind) & 1;
+       }
 
-       if ((start ^ leaf->signs) & 1)
+       /// Generate signs at the corners from the edge parity
+       void generateSigns(LeafNode *leaf, unsigned char table[], int start)
        {
-               leaf->signs = ~(leaf->signs);
+               leaf->signs = table[leaf->edge_parity];
+
+               if ((start ^ leaf->signs) & 1) {
+                       leaf->signs = ~(leaf->signs);
+               }
        }
-}
 
-/// Get edge parity
-int getEdgeParity(LeafNode *leaf, int index)
-{
-       assert(index >= 0 && index <= 11);
+       /// Get edge parity
+       int getEdgeParity(LeafNode *leaf, int index)
+       {
+               assert(index >= 0 && index <= 11);
 
-       return (leaf->edge_parity >> index) & 1;
-}
+               return (leaf->edge_parity >> index) & 1;
+       }
 
-/// Get edge parity on a face
-int getFaceParity(LeafNode *leaf, int index)
-{
-       int a = getEdgeParity(leaf, faceMap[index][0]) +
+       /// Get edge parity on a face
+       int getFaceParity(LeafNode *leaf, int index)
+       {
+               int a = getEdgeParity(leaf, faceMap[index][0]) +
                getEdgeParity(leaf, faceMap[index][1]) +
                getEdgeParity(leaf, faceMap[index][2]) +
                getEdgeParity(leaf, faceMap[index][3]);
-       return (a & 1);
-}
-int getFaceEdgeNum(LeafNode *leaf, int index)
-{
-       int a = getEdgeParity(leaf, faceMap[index][0]) +
+               return (a & 1);
+       }
+       int getFaceEdgeNum(LeafNode *leaf, int index)
+       {
+               int a = getEdgeParity(leaf, faceMap[index][0]) +
                getEdgeParity(leaf, faceMap[index][1]) +
                getEdgeParity(leaf, faceMap[index][2]) +
                getEdgeParity(leaf, faceMap[index][3]);
-       return a;
-}
-
-/// Set edge parity
-void flipEdge(LeafNode *leaf, int index)
-{
-       assert(index >= 0 && index <= 11);
-
-       leaf->edge_parity ^= (1 << index);
-}
-
-/// Set 1
-void setEdge(LeafNode *leaf, int index)
-{
-       assert(index >= 0 && index <= 11);
+               return a;
+       }
 
-       leaf->edge_parity |= (1 << index);
-}
+       /// Set edge parity
+       void flipEdge(LeafNode *leaf, int index)
+       {
+               assert(index >= 0 && index <= 11);
 
-/// Set 0
-void resetEdge(LeafNode *leaf, int index)
-{
-       assert(index >= 0 && index <= 11);
+               leaf->edge_parity ^= (1 << index);
+       }
 
-       leaf->edge_parity &= ~(1 << index);
-}
+       /// Set 1
+       void setEdge(LeafNode *leaf, int index)
+       {
+               assert(index >= 0 && index <= 11);
 
-/// Flipping with a new intersection offset
-void createPrimalEdgesMask(LeafNode *leaf)
-{
-       leaf->primary_edge_intersections = getPrimalEdgesMask2(leaf);
-}
+               leaf->edge_parity |= (1 << index);
+       }
 
-void setStoredEdgesParity(LeafNode *leaf, int pindex)
-{
-       assert(pindex <= 2 && pindex >= 0);
+       /// Set 0
+       void resetEdge(LeafNode *leaf, int index)
+       {
+               assert(index >= 0 && index <= 11);
 
-       leaf->primary_edge_intersections |= (1 << pindex);
-}
-int getStoredEdgesParity(LeafNode *leaf, int pindex)
-{
-       assert(pindex <= 2 && pindex >= 0);
+               leaf->edge_parity &= ~(1 << index);
+       }
 
-       return (leaf->primary_edge_intersections >> pindex) & 1;
-}
+       /// Flipping with a new intersection offset
+       void createPrimalEdgesMask(LeafNode *leaf)
+       {
+               leaf->primary_edge_intersections = getPrimalEdgesMask2(leaf);
+       }
 
-LeafNode *flipEdge(LeafNode *leaf, int index, float alpha)
-{
-       flipEdge(leaf, index);
+       void setStoredEdgesParity(LeafNode *leaf, int pindex)
+       {
+               assert(pindex <= 2 && pindex >= 0);
 
-       if ((index & 3) == 0)
+               leaf->primary_edge_intersections |= (1 << pindex);
+       }
+       int getStoredEdgesParity(LeafNode *leaf, int pindex)
        {
-               int ind = index / 4;
-               if (getEdgeParity(leaf, index) && !getStoredEdgesParity(leaf, ind))
-               {
-                       // Create a new node
-                       int num = getNumEdges(leaf) + 1;
-                       setStoredEdgesParity(leaf, ind);
-                       int count = getEdgeCount(leaf, ind);
-                       LeafNode *nleaf = createLeaf(num);
-                       *nleaf = *leaf;
+               assert(pindex <= 2 && pindex >= 0);
 
-                       setEdgeOffset(nleaf, alpha, count);
+               return (leaf->primary_edge_intersections >> pindex) & 1;
+       }
 
-                       if (num > 1)
-                       {
-                               float *pts = leaf->edge_intersections;
-                               float *npts = nleaf->edge_intersections;
-                               for (int i = 0; i < count; i++)
-                               {
-                                       for (int j = 0; j < EDGE_FLOATS; j++)
-                                       {
-                                               npts[i * EDGE_FLOATS + j] = pts[i * EDGE_FLOATS + j];
+       LeafNode *flipEdge(LeafNode *leaf, int index, float alpha)
+       {
+               flipEdge(leaf, index);
+
+               if ((index & 3) == 0) {
+                       int ind = index / 4;
+                       if (getEdgeParity(leaf, index) && !getStoredEdgesParity(leaf, ind)) {
+                               // Create a new node
+                               int num = getNumEdges(leaf) + 1;
+                               setStoredEdgesParity(leaf, ind);
+                               int count = getEdgeCount(leaf, ind);
+                               LeafNode *nleaf = createLeaf(num);
+                               *nleaf = *leaf;
+
+                               setEdgeOffset(nleaf, alpha, count);
+
+                               if (num > 1) {
+                                       float *pts = leaf->edge_intersections;
+                                       float *npts = nleaf->edge_intersections;
+                                       for (int i = 0; i < count; i++) {
+                                               for (int j = 0; j < EDGE_FLOATS; j++) {
+                                                       npts[i * EDGE_FLOATS + j] = pts[i * EDGE_FLOATS + j];
+                                               }
                                        }
-                               }
-                               for (int i = count + 1; i < num; i++)
-                               {
-                                       for (int j = 0; j < EDGE_FLOATS; j++)
-                                       {
-                                               npts[i * EDGE_FLOATS + j] = pts[(i - 1) * EDGE_FLOATS + j];
+                                       for (int i = count + 1; i < num; i++) {
+                                               for (int j = 0; j < EDGE_FLOATS; j++) {
+                                                       npts[i * EDGE_FLOATS + j] = pts[(i - 1) * EDGE_FLOATS + j];
+                                               }
                                        }
                                }
-                       }
 
 
-                       removeLeaf(num - 1, (LeafNode *)leaf);
-                       leaf = nleaf;
+                               removeLeaf(num - 1, (LeafNode *)leaf);
+                               leaf = nleaf;
+                       }
                }
-       }
 
-       return leaf;
-}
+               return leaf;
+       }
 
-/// Update parent link
-void updateParent(InternalNode *node, int len, int st[3], LeafNode *leaf)
-{
-       // First, locate the parent
-       int count;
-       InternalNode *parent = locateParent(node, len, st, count);
+       /// Update parent link
+       void updateParent(InternalNode *node, int len, int st[3], LeafNode *leaf)
+       {
+               // First, locate the parent
+               int count;
+               InternalNode *parent = locateParent(node, len, st, count);
 
-       // Update
-       setChild(parent, count, (Node *)leaf);
-}
+               // Update
+               setChild(parent, count, (Node *)leaf);
+       }
 
-void updateParent(InternalNode *node, int len, int st[3])
-{
-       if (len == dimen)
+       void updateParent(InternalNode *node, int len, int st[3])
        {
-               root = (Node *)node;
-               return;
-       }
+               if (len == dimen) {
+                       root = (Node *)node;
+                       return;
+               }
 
-       // First, locate the parent
-       int count;
-       InternalNode *parent = locateParent(len, st, count);
+               // First, locate the parent
+               int count;
+               InternalNode *parent = locateParent(len, st, count);
 
-       // UPdate
-       setChild(parent, count, (Node *)node);
-}
+               // UPdate
+               setChild(parent, count, (Node *)node);
+       }
 
-/// Find edge intersection on a given edge
-int getEdgeIntersectionByIndex(int st[3], int index, float pt[3], int check)
-{
-       // First, locat the leaf
-       LeafNode *leaf;
-       if (check)
+       /// Find edge intersection on a given edge
+       int getEdgeIntersectionByIndex(int st[3], int index, float pt[3], int check)
        {
-               leaf = locateLeafCheck(st);
+               // First, locat the leaf
+               LeafNode *leaf;
+               if (check) {
+                       leaf = locateLeafCheck(st);
+               }
+               else {
+                       leaf = locateLeaf(st);
+               }
+
+               if (leaf && getStoredEdgesParity(leaf, index)) {
+                       float off = getEdgeOffset(leaf, getEdgeCount(leaf, index));
+                       pt[0] = (float) st[0];
+                       pt[1] = (float) st[1];
+                       pt[2] = (float) st[2];
+                       pt[index] += off * mindimen;
+
+                       return 1;
+               }
+               else {
+                       return 0;
+               }
        }
-       else {
-               leaf = locateLeaf(st);
+
+       /// Retrieve number of edges intersected
+       int getPrimalEdgesMask(LeafNode *leaf)
+       {
+               return leaf->primary_edge_intersections;
        }
 
-       if (leaf && getStoredEdgesParity(leaf, index))
+       int getPrimalEdgesMask2(LeafNode *leaf)
        {
-               float off = getEdgeOffset(leaf, getEdgeCount(leaf, index));
-               pt[0] = (float) st[0];
-               pt[1] = (float) st[1];
-               pt[2] = (float) st[2];
-               pt[index] += off * mindimen;
+               return (((leaf->edge_parity &   0x1) >> 0) |
+                               ((leaf->edge_parity &  0x10) >> 3) |
+                               ((leaf->edge_parity & 0x100) >> 6));
+       }
 
-               return 1;
+       /// Get the count for a primary edge
+       int getEdgeCount(LeafNode *leaf, int index)
+       {
+               return edgeCountTable[getPrimalEdgesMask(leaf)][index];
        }
-       else {
-               return 0;
+       int getNumEdges(LeafNode *leaf)
+       {
+               return numEdgeTable[getPrimalEdgesMask(leaf)];
        }
-}
-
-/// Retrieve number of edges intersected
-int getPrimalEdgesMask(LeafNode *leaf)
-{
-       return leaf->primary_edge_intersections;
-}
-
-int getPrimalEdgesMask2(LeafNode *leaf)
-{
-       return (((leaf->edge_parity &   0x1) >> 0) |
-               ((leaf->edge_parity &  0x10) >> 3) |
-               ((leaf->edge_parity & 0x100) >> 6));
-}
-
-/// Get the count for a primary edge
-int getEdgeCount(LeafNode *leaf, int index)
-{
-       return edgeCountTable[getPrimalEdgesMask(leaf)][index];
-}
-int getNumEdges(LeafNode *leaf)
-{
-       return numEdgeTable[getPrimalEdgesMask(leaf)];
-}
-
-int getNumEdges2(LeafNode *leaf)
-{
-       return numEdgeTable[getPrimalEdgesMask2(leaf)];
-}
 
-/// Set edge intersection
-void setEdgeOffset(LeafNode *leaf, float pt, int count)
-{
-       float *pts = leaf->edge_intersections;
-       pts[EDGE_FLOATS * count] = pt;
-       pts[EDGE_FLOATS * count + 1] = 0;
-       pts[EDGE_FLOATS * count + 2] = 0;
-       pts[EDGE_FLOATS * count + 3] = 0;
-}
-
-/// Set multiple edge intersections
-void setEdgeOffsets(LeafNode *leaf, float pt[3], int len)
-{
-       float *pts = leaf->edge_intersections;
-       for (int i = 0; i < len; i++)
+       int getNumEdges2(LeafNode *leaf)
        {
-               pts[i] = pt[i];
+               return numEdgeTable[getPrimalEdgesMask2(leaf)];
        }
-}
 
-/// Retrieve edge intersection
-float getEdgeOffset(LeafNode *leaf, int count)
-{
-       return leaf->edge_intersections[4 * count];
-}
-
-/// Update method
-LeafNode *updateEdgeOffsets(LeafNode *leaf, int oldlen, int newlen, float offs[3])
-{
-       // First, create a new leaf node
-       LeafNode *nleaf = createLeaf(newlen);
-       *nleaf = *leaf;
+       /// Set edge intersection
+       void setEdgeOffset(LeafNode *leaf, float pt, int count)
+       {
+               float *pts = leaf->edge_intersections;
+               pts[EDGE_FLOATS * count] = pt;
+               pts[EDGE_FLOATS * count + 1] = 0;
+               pts[EDGE_FLOATS * count + 2] = 0;
+               pts[EDGE_FLOATS * count + 3] = 0;
+       }
 
-       // Next, fill in the offsets
-       setEdgeOffsets(nleaf, offs, newlen);
+       /// Set multiple edge intersections
+       void setEdgeOffsets(LeafNode *leaf, float pt[3], int len)
+       {
+               float *pts = leaf->edge_intersections;
+               for (int i = 0; i < len; i++) {
+                       pts[i] = pt[i];
+               }
+       }
 
-       // Finally, delete the old leaf
-       removeLeaf(oldlen, leaf);
+       /// Retrieve edge intersection
+       float getEdgeOffset(LeafNode *leaf, int count)
+       {
+               return leaf->edge_intersections[4 * count];
+       }
 
-       return nleaf;
-}
+       /// Update method
+       LeafNode *updateEdgeOffsets(LeafNode *leaf, int oldlen, int newlen, float offs[3])
+       {
+               // First, create a new leaf node
+               LeafNode *nleaf = createLeaf(newlen);
+               *nleaf = *leaf;
 
-/// Set minimizer index
-void setMinimizerIndex(LeafNode *leaf, int index)
-{
-       leaf->minimizer_index = index;
-}
+               // Next, fill in the offsets
+               setEdgeOffsets(nleaf, offs, newlen);
 
-/// Get minimizer index
-int getMinimizerIndex(LeafNode *leaf)
-{
-       return leaf->minimizer_index;
-}
+               // Finally, delete the old leaf
+               removeLeaf(oldlen, leaf);
 
-int getMinimizerIndex(LeafNode *leaf, int eind)
-{
-       int add = manifold_table[getSignMask(leaf)].pairs[eind][0] - 1;
-       assert(add >= 0);
-       return leaf->minimizer_index + add;
-}
+               return nleaf;
+       }
 
-void getMinimizerIndices(LeafNode *leaf, int eind, int inds[2])
-{
-       const int *add = manifold_table[getSignMask(leaf)].pairs[eind];
-       inds[0] = leaf->minimizer_index + add[0] - 1;
-       if (add[0] == add[1])
+       /// Set minimizer index
+       void setMinimizerIndex(LeafNode *leaf, int index)
        {
-               inds[1] = -1;
+               leaf->minimizer_index = index;
        }
-       else {
-               inds[1] = leaf->minimizer_index + add[1] - 1;
+
+       /// Get minimizer index
+       int getMinimizerIndex(LeafNode *leaf)
+       {
+               return leaf->minimizer_index;
        }
-}
 
+       int getMinimizerIndex(LeafNode *leaf, int eind)
+       {
+               int add = manifold_table[getSignMask(leaf)].pairs[eind][0] - 1;
+               assert(add >= 0);
+               return leaf->minimizer_index + add;
+       }
 
-/// Set edge intersection
-void setEdgeOffsetNormal(LeafNode *leaf, float pt, float a, float b, float c, int count)
-{
-       float *pts = leaf->edge_intersections;
-       pts[4 * count] = pt;
-       pts[4 * count + 1] = a;
-       pts[4 * count + 2] = b;
-       pts[4 * count + 3] = c;
-}
-
-float getEdgeOffsetNormal(LeafNode *leaf, int count, float& a, float& b, float& c)
-{
-       float *pts = leaf->edge_intersections;
-       a = pts[4 * count + 1];
-       b = pts[4 * count + 2];
-       c = pts[4 * count + 3];
-       return pts[4 * count];
-}
-
-/// Set multiple edge intersections
-void setEdgeOffsetsNormals(LeafNode *leaf, float pt[], float a[], float b[], float c[], int len)
-{
-       float *pts = leaf->edge_intersections;
-       for (int i = 0; i < len; i++)
+       void getMinimizerIndices(LeafNode *leaf, int eind, int inds[2])
        {
-               if (pt[i] > 1 || pt[i] < 0)
-               {
-                       printf("\noffset: %f\n", pt[i]);
+               const int *add = manifold_table[getSignMask(leaf)].pairs[eind];
+               inds[0] = leaf->minimizer_index + add[0] - 1;
+               if (add[0] == add[1]) {
+                       inds[1] = -1;
+               }
+               else {
+                       inds[1] = leaf->minimizer_index + add[1] - 1;
                }
-               pts[i * 4] = pt[i];
-               pts[i * 4 + 1] = a[i];
-               pts[i * 4 + 2] = b[i];
-               pts[i * 4 + 3] = c[i];
        }
-}
-
-/// Retrieve complete edge intersection
-void getEdgeIntersectionByIndex(LeafNode *leaf, int index, int st[3], int len, float pt[3], float nm[3])
-{
-       int count = getEdgeCount(leaf, index);
-       float *pts = leaf->edge_intersections;
-
-       float off = pts[4 * count];
-
-       pt[0] = (float) st[0];
-       pt[1] = (float) st[1];
-       pt[2] = (float) st[2];
-       pt[index] += (off * len);
-
-       nm[0] = pts[4 * count + 1];
-       nm[1] = pts[4 * count + 2];
-       nm[2] = pts[4 * count + 3];
-}
-
-float getEdgeOffsetNormalByIndex(LeafNode *leaf, int index, float nm[3])
-{
-       int count = getEdgeCount(leaf, index);
-       float *pts = leaf->edge_intersections;
-
-       float off = pts[4 * count];
-
-       nm[0] = pts[4 * count + 1];
-       nm[1] = pts[4 * count + 2];
-       nm[2] = pts[4 * count + 3];
 
-       return off;
-}
 
-void fillEdgeIntersections(LeafNode *leaf, int st[3], int len, float pts[12][3], float norms[12][3])
-{
-       int i;
-       // int stt[3] = {0, 0, 0};
-
-       // The three primal edges are easy
-       int pmask[3] = {0, 4, 8};
-       for (i = 0; i < 3; i++)
+       /// Set edge intersection
+       void setEdgeOffsetNormal(LeafNode *leaf, float pt, float a, float b, float c, int count)
        {
-               if (getEdgeParity(leaf, pmask[i]))
-               {
-                       // getEdgeIntersectionByIndex(leaf, i, stt, 1, pts[pmask[i]], norms[pmask[i]]);
-                       getEdgeIntersectionByIndex(leaf, i, st, len, pts[pmask[i]], norms[pmask[i]]);
-               }
+               float *pts = leaf->edge_intersections;
+               pts[4 * count] = pt;
+               pts[4 * count + 1] = a;
+               pts[4 * count + 2] = b;
+               pts[4 * count + 3] = c;
        }
 
-       // 3 face adjacent cubes
-       int fmask[3][2] = {{6, 10}, {2, 9}, {1, 5}};
-       int femask[3][2] = {{1, 2}, {0, 2}, {0, 1}};
-       for (i = 0; i < 3; i++)
+       float getEdgeOffsetNormal(LeafNode *leaf, int count, float& a, float& b, float& c)
        {
-               int e1 = getEdgeParity(leaf, fmask[i][0]);
-               int e2 = getEdgeParity(leaf, fmask[i][1]);
-               if (e1 || e2)
-               {
-                       int nst[3] = {st[0], st[1], st[2]};
-                       nst[i] += len;
-                       // int nstt[3] = {0, 0, 0};
-                       // nstt[i] += 1;
-                       LeafNode *node = locateLeaf(nst);
+               float *pts = leaf->edge_intersections;
+               a = pts[4 * count + 1];
+               b = pts[4 * count + 2];
+               c = pts[4 * count + 3];
+               return pts[4 * count];
+       }
 
-                       if (e1)
-                       {
-                               // getEdgeIntersectionByIndex(node, femask[i][0], nstt, 1, pts[fmask[i][0]], norms[fmask[i][0]]);
-                               getEdgeIntersectionByIndex(node, femask[i][0], nst, len, pts[fmask[i][0]], norms[fmask[i][0]]);
-                       }
-                       if (e2)
-                       {
-                               // getEdgeIntersectionByIndex(node, femask[i][1], nstt, 1, pts[fmask[i][1]], norms[fmask[i][1]]);
-                               getEdgeIntersectionByIndex(node, femask[i][1], nst, len, pts[fmask[i][1]], norms[fmask[i][1]]);
+       /// Set multiple edge intersections
+       void setEdgeOffsetsNormals(LeafNode *leaf, const float pt[],
+                                                          const float a[], const float b[],
+                                                          const float c[], int len)
+       {
+               float *pts = leaf->edge_intersections;
+               for (int i = 0; i < len; i++) {
+                       if (pt[i] > 1 || pt[i] < 0) {
+                               printf("\noffset: %f\n", pt[i]);
                        }
+                       pts[i * 4] = pt[i];
+                       pts[i * 4 + 1] = a[i];
+                       pts[i * 4 + 2] = b[i];
+                       pts[i * 4 + 3] = c[i];
                }
        }
 
-       // 3 edge adjacent cubes
-       int emask[3] = {3, 7, 11};
-       int eemask[3] = {0, 1, 2};
-       for (i = 0; i < 3; i++)
+       /// Retrieve complete edge intersection
+       void getEdgeIntersectionByIndex(LeafNode *leaf, int index, int st[3], int len, float pt[3], float nm[3])
        {
-               if (getEdgeParity(leaf, emask[i]))
-               {
-                       int nst[3] = {st[0] + len, st[1] + len, st[2] + len};
-                       nst[i] -= len;
-                       // int nstt[3] = {1, 1, 1};
-                       // nstt[i] -= 1;
-                       LeafNode *node = locateLeaf(nst);
+               int count = getEdgeCount(leaf, index);
+               float *pts = leaf->edge_intersections;
 
-                       // getEdgeIntersectionByIndex(node, eemask[i], nstt, 1, pts[emask[i]], norms[emask[i]]);
-                       getEdgeIntersectionByIndex(node, eemask[i], nst, len, pts[emask[i]], norms[emask[i]]);
-               }
-       }
-}
+               float off = pts[4 * count];
 
+               pt[0] = (float) st[0];
+               pt[1] = (float) st[1];
+               pt[2] = (float) st[2];
+               pt[index] += (off * len);
 
-void fillEdgeIntersections(LeafNode *leaf, int st[3], int len, float pts[12][3], float norms[12][3], int parity[12])
-{
-       int i;
-       for (i = 0; i < 12; i++)
-       {
-               parity[i] = 0;
+               nm[0] = pts[4 * count + 1];
+               nm[1] = pts[4 * count + 2];
+               nm[2] = pts[4 * count + 3];
        }
-       // int stt[3] = {0, 0, 0};
 
-       // The three primal edges are easy
-       int pmask[3] = {0, 4, 8};
-       for (i = 0; i < 3; i++)
+       float getEdgeOffsetNormalByIndex(LeafNode *leaf, int index, float nm[3])
        {
-               if (getStoredEdgesParity(leaf, i))
-               {
-                       // getEdgeIntersectionByIndex(leaf, i, stt, 1, pts[pmask[i]], norms[pmask[i]]);
-                       getEdgeIntersectionByIndex(leaf, i, st, len, pts[pmask[i]], norms[pmask[i]]);
-                       parity[pmask[i]] = 1;
-               }
+               int count = getEdgeCount(leaf, index);
+               float *pts = leaf->edge_intersections;
+
+               float off = pts[4 * count];
+
+               nm[0] = pts[4 * count + 1];
+               nm[1] = pts[4 * count + 2];
+               nm[2] = pts[4 * count + 3];
+
+               return off;
        }
 
-       // 3 face adjacent cubes
-       int fmask[3][2] = {{6, 10}, {2, 9}, {1, 5}};
-       int femask[3][2] = {{1, 2}, {0, 2}, {0, 1}};
-       for (i = 0; i < 3; i++)
+       void fillEdgeIntersections(LeafNode *leaf, int st[3], int len, float pts[12][3], float norms[12][3])
        {
-               {
-                       int nst[3] = {st[0], st[1], st[2]};
-                       nst[i] += len;
-                       // int nstt[3] = {0, 0, 0};
-                       // nstt[i] += 1;
-                       LeafNode *node = locateLeafCheck(nst);
-                       if (node == NULL)
-                       {
-                               continue;
+               int i;
+               // int stt[3] = {0, 0, 0};
+
+               // The three primal edges are easy
+               int pmask[3] = {0, 4, 8};
+               for (i = 0; i < 3; i++) {
+                       if (getEdgeParity(leaf, pmask[i])) {
+                               // getEdgeIntersectionByIndex(leaf, i, stt, 1, pts[pmask[i]], norms[pmask[i]]);
+                               getEdgeIntersectionByIndex(leaf, i, st, len, pts[pmask[i]], norms[pmask[i]]);
                        }
+               }
 
-                       int e1 = getStoredEdgesParity(node, femask[i][0]);
-                       int e2 = getStoredEdgesParity(node, femask[i][1]);
-
-                       if (e1)
-                       {
-                               // getEdgeIntersectionByIndex(node, femask[i][0], nstt, 1, pts[fmask[i][0]], norms[fmask[i][0]]);
-                               getEdgeIntersectionByIndex(node, femask[i][0], nst, len, pts[fmask[i][0]], norms[fmask[i][0]]);
-                               parity[fmask[i][0]] = 1;
-                       }
-                       if (e2)
-                       {
-                               // getEdgeIntersectionByIndex(node, femask[i][1], nstt, 1, pts[fmask[i][1]], norms[fmask[i][1]]);
-                               getEdgeIntersectionByIndex(node, femask[i][1], nst, len, pts[fmask[i][1]], norms[fmask[i][1]]);
-                               parity[fmask[i][1]] = 1;
+               // 3 face adjacent cubes
+               int fmask[3][2] = {{6, 10}, {2, 9}, {1, 5}};
+               int femask[3][2] = {{1, 2}, {0, 2}, {0, 1}};
+               for (i = 0; i < 3; i++) {
+                       int e1 = getEdgeParity(leaf, fmask[i][0]);
+                       int e2 = getEdgeParity(leaf, fmask[i][1]);
+                       if (e1 || e2) {
+                               int nst[3] = {st[0], st[1], st[2]};
+                               nst[i] += len;
+                               // int nstt[3] = {0, 0, 0};
+                               // nstt[i] += 1;
+                               LeafNode *node = locateLeaf(nst);
+
+                               if (e1) {
+                                       // getEdgeIntersectionByIndex(node, femask[i][0], nstt, 1, pts[fmask[i][0]], norms[fmask[i][0]]);
+                                       getEdgeIntersectionByIndex(node, femask[i][0], nst, len, pts[fmask[i][0]], norms[fmask[i][0]]);
+                               }
+                               if (e2) {
+                                       // getEdgeIntersectionByIndex(node, femask[i][1], nstt, 1, pts[fmask[i][1]], norms[fmask[i][1]]);
+                                       getEdgeIntersectionByIndex(node, femask[i][1], nst, len, pts[fmask[i][1]], norms[fmask[i][1]]);
+                               }
                        }
                }
-       }
 
-       // 3 edge adjacent cubes
-       int emask[3] = {3, 7, 11};
-       int eemask[3] = {0, 1, 2};
-       for (i = 0; i < 3; i++)
-       {
-//                     if(getEdgeParity(leaf, emask[i]))
-               {
-                       int nst[3] = {st[0] + len, st[1] + len, st[2] + len};
-                       nst[i] -= len;
-                       // int nstt[3] = {1, 1, 1};
-                       // nstt[i] -= 1;
-                       LeafNode *node = locateLeafCheck(nst);
-                       if (node == NULL)
-                       {
-                               continue;
-                       }
+               // 3 edge adjacent cubes
+               int emask[3] = {3, 7, 11};
+               int eemask[3] = {0, 1, 2};
+               for (i = 0; i < 3; i++) {
+                       if (getEdgeParity(leaf, emask[i])) {
+                               int nst[3] = {st[0] + len, st[1] + len, st[2] + len};
+                               nst[i] -= len;
+                               // int nstt[3] = {1, 1, 1};
+                               // nstt[i] -= 1;
+                               LeafNode *node = locateLeaf(nst);
 
-                       if (getStoredEdgesParity(node, eemask[i]))
-                       {
                                // getEdgeIntersectionByIndex(node, eemask[i], nstt, 1, pts[emask[i]], norms[emask[i]]);
                                getEdgeIntersectionByIndex(node, eemask[i], nst, len, pts[emask[i]], norms[emask[i]]);
-                               parity[emask[i]] = 1;
                        }
                }
        }
-}
 
-void fillEdgeOffsetsNormals(LeafNode *leaf, int st[3], int len, float pts[12], float norms[12][3], int parity[12])
-{
-       int i;
-       for (i = 0; i < 12; i++)
-       {
-               parity[i] = 0;
-       }
-       // int stt[3] = {0, 0, 0};
 
-       // The three primal edges are easy
-       int pmask[3] = {0, 4, 8};
-       for (i = 0; i < 3; i++)
+       void fillEdgeIntersections(LeafNode *leaf, int st[3], int len, float pts[12][3], float norms[12][3], int parity[12])
        {
-               if (getStoredEdgesParity(leaf, i))
-               {
-                       pts[pmask[i]] = getEdgeOffsetNormalByIndex(leaf, i, norms[pmask[i]]);
-                       parity[pmask[i]] = 1;
+               int i;
+               for (i = 0; i < 12; i++) {
+                       parity[i] = 0;
+               }
+               // int stt[3] = {0, 0, 0};
+
+               // The three primal edges are easy
+               int pmask[3] = {0, 4, 8};
+               for (i = 0; i < 3; i++) {
+                       if (getStoredEdgesParity(leaf, i)) {
+                               // getEdgeIntersectionByIndex(leaf, i, stt, 1, pts[pmask[i]], norms[pmask[i]]);
+                               getEdgeIntersectionByIndex(leaf, i, st, len, pts[pmask[i]], norms[pmask[i]]);
+                               parity[pmask[i]] = 1;
+                       }
                }
-       }
 
-       // 3 face adjacent cubes
-       int fmask[3][2] = {{6, 10}, {2, 9}, {1, 5}};
-       int femask[3][2] = {{1, 2}, {0, 2}, {0, 1}};
-       for (i = 0; i < 3; i++)
-       {
-               {
-                       int nst[3] = {st[0], st[1], st[2]};
-                       nst[i] += len;
-                       // int nstt[3] = {0, 0, 0};
-                       // nstt[i] += 1;
-                       LeafNode *node = locateLeafCheck(nst);
-                       if (node == NULL)
+               // 3 face adjacent cubes
+               int fmask[3][2] = {{6, 10}, {2, 9}, {1, 5}};
+               int femask[3][2] = {{1, 2}, {0, 2}, {0, 1}};
+               for (i = 0; i < 3; i++) {
                        {
-                               continue;
-                       }
+                               int nst[3] = {st[0], st[1], st[2]};
+                               nst[i] += len;
+                               // int nstt[3] = {0, 0, 0};
+                               // nstt[i] += 1;
+                               LeafNode *node = locateLeafCheck(nst);
+                               if (node == NULL) {
+                                       continue;
+                               }
 
-                       int e1 = getStoredEdgesParity(node, femask[i][0]);
-                       int e2 = getStoredEdgesParity(node, femask[i][1]);
+                               int e1 = getStoredEdgesParity(node, femask[i][0]);
+                               int e2 = getStoredEdgesParity(node, femask[i][1]);
 
-                       if (e1)
-                       {
-                               pts[fmask[i][0]] = getEdgeOffsetNormalByIndex(node, femask[i][0], norms[fmask[i][0]]);
-                               parity[fmask[i][0]] = 1;
+                               if (e1) {
+                                       // getEdgeIntersectionByIndex(node, femask[i][0], nstt, 1, pts[fmask[i][0]], norms[fmask[i][0]]);
+                                       getEdgeIntersectionByIndex(node, femask[i][0], nst, len, pts[fmask[i][0]], norms[fmask[i][0]]);
+                                       parity[fmask[i][0]] = 1;
+                               }
+                               if (e2) {
+                                       // getEdgeIntersectionByIndex(node, femask[i][1], nstt, 1, pts[fmask[i][1]], norms[fmask[i][1]]);
+                                       getEdgeIntersectionByIndex(node, femask[i][1], nst, len, pts[fmask[i][1]], norms[fmask[i][1]]);
+                                       parity[fmask[i][1]] = 1;
+                               }
                        }
-                       if (e2)
+               }
+
+               // 3 edge adjacent cubes
+               int emask[3] = {3, 7, 11};
+               int eemask[3] = {0, 1, 2};
+               for (i = 0; i < 3; i++) {
+                       //                      if(getEdgeParity(leaf, emask[i]))
                        {
-                               pts[fmask[i][1]] = getEdgeOffsetNormalByIndex(node, femask[i][1], norms[fmask[i][1]]);
-                               parity[fmask[i][1]] = 1;
+                               int nst[3] = {st[0] + len, st[1] + len, st[2] + len};
+                               nst[i] -= len;
+                               // int nstt[3] = {1, 1, 1};
+                               // nstt[i] -= 1;
+                               LeafNode *node = locateLeafCheck(nst);
+                               if (node == NULL) {
+                                       continue;
+                               }
+
+                               if (getStoredEdgesParity(node, eemask[i])) {
+                                       // getEdgeIntersectionByIndex(node, eemask[i], nstt, 1, pts[emask[i]], norms[emask[i]]);
+                                       getEdgeIntersectionByIndex(node, eemask[i], nst, len, pts[emask[i]], norms[emask[i]]);
+                                       parity[emask[i]] = 1;
+                               }
                        }
                }
        }
 
-       // 3 edge adjacent cubes
-       int emask[3] = {3, 7, 11};
-       int eemask[3] = {0, 1, 2};
-       for (i = 0; i < 3; i++)
+       void fillEdgeOffsetsNormals(LeafNode *leaf, int st[3], int len, float pts[12], float norms[12][3], int parity[12])
        {
-//                     if(getEdgeParity(leaf, emask[i]))
-               {
-                       int nst[3] = {st[0] + len, st[1] + len, st[2] + len};
-                       nst[i] -= len;
-                       // int nstt[3] = {1, 1, 1};
-                       // nstt[i] -= 1;
-                       LeafNode *node = locateLeafCheck(nst);
-                       if (node == NULL)
-                       {
-                               continue;
+               int i;
+               for (i = 0; i < 12; i++) {
+                       parity[i] = 0;
+               }
+               // int stt[3] = {0, 0, 0};
+
+               // The three primal edges are easy
+               int pmask[3] = {0, 4, 8};
+               for (i = 0; i < 3; i++) {
+                       if (getStoredEdgesParity(leaf, i)) {
+                               pts[pmask[i]] = getEdgeOffsetNormalByIndex(leaf, i, norms[pmask[i]]);
+                               parity[pmask[i]] = 1;
                        }
+               }
 
-                       if (getStoredEdgesParity(node, eemask[i]))
+               // 3 face adjacent cubes
+               int fmask[3][2] = {{6, 10}, {2, 9}, {1, 5}};
+               int femask[3][2] = {{1, 2}, {0, 2}, {0, 1}};
+               for (i = 0; i < 3; i++) {
                        {
-                               pts[emask[i]] = getEdgeOffsetNormalByIndex(node, eemask[i], norms[emask[i]]);
-                               parity[emask[i]] = 1;
+                               int nst[3] = {st[0], st[1], st[2]};
+                               nst[i] += len;
+                               // int nstt[3] = {0, 0, 0};
+                               // nstt[i] += 1;
+                               LeafNode *node = locateLeafCheck(nst);
+                               if (node == NULL) {
+                                       continue;
+                               }
+
+                               int e1 = getStoredEdgesParity(node, femask[i][0]);
+                               int e2 = getStoredEdgesParity(node, femask[i][1]);
+
+                               if (e1) {
+                                       pts[fmask[i][0]] = getEdgeOffsetNormalByIndex(node, femask[i][0], norms[fmask[i][0]]);
+                                       parity[fmask[i][0]] = 1;
+                               }
+                               if (e2) {
+                                       pts[fmask[i][1]] = getEdgeOffsetNormalByIndex(node, femask[i][1], norms[fmask[i][1]]);
+                                       parity[fmask[i][1]] = 1;
+                               }
                        }
                }
-       }
-}
 
+               // 3 edge adjacent cubes
+               int emask[3] = {3, 7, 11};
+               int eemask[3] = {0, 1, 2};
+               for (i = 0; i < 3; i++) {
+                       //                      if(getEdgeParity(leaf, emask[i]))
+                       {
+                               int nst[3] = {st[0] + len, st[1] + len, st[2] + len};
+                               nst[i] -= len;
+                               // int nstt[3] = {1, 1, 1};
+                               // nstt[i] -= 1;
+                               LeafNode *node = locateLeafCheck(nst);
+                               if (node == NULL) {
+                                       continue;
+                               }
 
-/// Update method
-LeafNode *updateEdgeOffsetsNormals(LeafNode *leaf, int oldlen, int newlen, float offs[3], float a[3], float b[3], float c[3])
-{
-       // First, create a new leaf node
-       LeafNode *nleaf = createLeaf(newlen);
-       *nleaf = *leaf;
+                               if (getStoredEdgesParity(node, eemask[i])) {
+                                       pts[emask[i]] = getEdgeOffsetNormalByIndex(node, eemask[i], norms[emask[i]]);
+                                       parity[emask[i]] = 1;
+                               }
+                       }
+               }
+       }
 
-       // Next, fill in the offsets
-       setEdgeOffsetsNormals(nleaf, offs, a, b, c, newlen);
 
-       // Finally, delete the old leaf
-       removeLeaf(oldlen, leaf);
+       /// Update method
+       LeafNode *updateEdgeOffsetsNormals(LeafNode *leaf, int oldlen, int newlen, float offs[3], float a[3], float b[3], float c[3])
+       {
+               // First, create a new leaf node
+               LeafNode *nleaf = createLeaf(newlen);
+               *nleaf = *leaf;
 
-       return nleaf;
-}
+               // Next, fill in the offsets
+               setEdgeOffsetsNormals(nleaf, offs, a, b, c, newlen);
 
-/// Locate a leaf
-/// WARNING: assuming this leaf already exists!
+               // Finally, delete the old leaf
+               removeLeaf(oldlen, leaf);
 
-LeafNode *locateLeaf(int st[3])
-{
-       Node *node = (Node *)root;
-       for (int i = GRID_DIMENSION - 1; i > GRID_DIMENSION - maxDepth - 1; i--)
-       {
-               int index = (((st[0] >> i) & 1) << 2) |
-                           (((st[1] >> i) & 1) << 1) |
-                           (((st[2] >> i) & 1));
-               node = getChild(&node->internal, getChildCount(&node->internal, index));
+               return nleaf;
        }
 
-       return &node->leaf;
-}
+       /// Locate a leaf
+       /// WARNING: assuming this leaf already exists!
 
-LeafNode *locateLeaf(InternalNode *parent, int len, int st[3])
-{
-       Node *node = (Node *)parent;
-       int index;
-       for (int i = len / 2; i >= mindimen; i >>= 1)
+       LeafNode *locateLeaf(int st[3])
        {
-               index = (((st[0] & i) ? 4 : 0) |
-                        ((st[1] & i) ? 2 : 0) |
-                        ((st[2] & i) ? 1 : 0));
-               node = getChild(&node->internal,
-                               getChildCount(&node->internal, index));
-       }
+               Node *node = (Node *)root;
+               for (int i = GRID_DIMENSION - 1; i > GRID_DIMENSION - maxDepth - 1; i--) {
+                       int index = (((st[0] >> i) & 1) << 2) |
+                               (((st[1] >> i) & 1) << 1) |
+                               (((st[2] >> i) & 1));
+                       node = getChild(&node->internal, getChildCount(&node->internal, index));
+               }
 
-       return &node->leaf;
-}
+               return &node->leaf;
+       }
 
-LeafNode *locateLeafCheck(int st[3])
-{
-       Node *node = (Node *)root;
-       for (int i = GRID_DIMENSION - 1; i > GRID_DIMENSION - maxDepth - 1; i--)
-       {
-               int index = (((st[0] >> i) & 1) << 2) |
-                           (((st[1] >> i) & 1) << 1) |
-                           (((st[2] >> i) & 1));
-               if (!hasChild(&node->internal, index))
-               {
-                       return NULL;
+       LeafNode *locateLeaf(InternalNode *parent, int len, int st[3])
+       {
+               Node *node = (Node *)parent;
+               int index;
+               for (int i = len / 2; i >= mindimen; i >>= 1) {
+                       index = (((st[0] & i) ? 4 : 0) |
+                                        ((st[1] & i) ? 2 : 0) |
+                                        ((st[2] & i) ? 1 : 0));
+                       node = getChild(&node->internal,
+                                                       getChildCount(&node->internal, index));
                }
-               node = getChild(&node->internal, getChildCount(&node->internal, index));
-       }
 
-       return &node->leaf;
-}
+               return &node->leaf;
+       }
 
-InternalNode *locateParent(int len, int st[3], int& count)
-{
-       InternalNode *node = (InternalNode *)root;
-       InternalNode *pre = NULL;
-       int index = 0;
-       for (int i = dimen / 2; i >= len; i >>= 1)
+       LeafNode *locateLeafCheck(int st[3])
        {
-               index = (((st[0] & i) ? 4 : 0) |
-                        ((st[1] & i) ? 2 : 0) |
-                        ((st[2] & i) ? 1 : 0));
-               pre = node;
-               node = &getChild(node, getChildCount(node, index))->internal;
-       }
+               Node *node = (Node *)root;
+               for (int i = GRID_DIMENSION - 1; i > GRID_DIMENSION - maxDepth - 1; i--) {
+                       int index = (((st[0] >> i) & 1) << 2) |
+                               (((st[1] >> i) & 1) << 1) |
+                               (((st[2] >> i) & 1));
+                       if (!hasChild(&node->internal, index)) {
+                               return NULL;
+                       }
+                       node = getChild(&node->internal, getChildCount(&node->internal, index));
+               }
 
-       count = getChildCount(pre, index);
-       return pre;
-}
+               return &node->leaf;
+       }
 
-InternalNode *locateParent(InternalNode *parent, int len, int st[3], int& count)
-{
-       InternalNode *node = parent;
-       InternalNode *pre = NULL;
-       int index = 0;
-       for (int i = len / 2; i >= mindimen; i >>= 1)
+       InternalNode *locateParent(int len, int st[3], int& count)
        {
-               index = (((st[0] & i) ? 4 : 0) |
-                        ((st[1] & i) ? 2 : 0) |
-                        ((st[2] & i) ? 1 : 0));
-               pre = node;
-               node = (InternalNode *)getChild(node, getChildCount(node, index));
-       }
+               InternalNode *node = (InternalNode *)root;
+               InternalNode *pre = NULL;
+               int index = 0;
+               for (int i = dimen / 2; i >= len; i >>= 1) {
+                       index = (((st[0] & i) ? 4 : 0) |
+                                        ((st[1] & i) ? 2 : 0) |
+                                        ((st[2] & i) ? 1 : 0));
+                       pre = node;
+                       node = &getChild(node, getChildCount(node, index))->internal;
+               }
 
-       count = getChildCount(pre, index);
-       return pre;
-}
+               count = getChildCount(pre, index);
+               return pre;
+       }
 
-/************ Operators for internal nodes ************/
+       InternalNode *locateParent(InternalNode *parent, int len, int st[3], int& count)
+       {
+               InternalNode *node = parent;
+               InternalNode *pre = NULL;
+               int index = 0;
+               for (int i = len / 2; i >= mindimen; i >>= 1) {
+                       index = (((st[0] & i) ? 4 : 0) |
+                                        ((st[1] & i) ? 2 : 0) |
+                                        ((st[2] & i) ? 1 : 0));
+                       pre = node;
+                       node = (InternalNode *)getChild(node, getChildCount(node, index));
+               }
 
-/// If child index exists
-int hasChild(InternalNode *node, int index)
-{
-       return (node->has_child >> index) & 1;
-}
+               count = getChildCount(pre, index);
+               return pre;
+       }
 
-/// Test if child is leaf
-int isLeaf(InternalNode *node, int index)
-{
-       return (node->child_is_leaf >> index) & 1;
-}
+       /************ Operators for internal nodes ************/
 
-/// Get the pointer to child index
-Node *getChild(InternalNode *node, int count)
-{
-       return node->children[count];
-};
+       /// If child index exists
+       int hasChild(InternalNode *node, int index)
+       {
+               return (node->has_child >> index) & 1;
+       }
 
-/// Get total number of children
-int getNumChildren(InternalNode *node)
-{
-       return numChildrenTable[node->has_child];
-}
+       /// Get the pointer to child index
+       Node *getChild(InternalNode *node, int count)
+       {
+               return node->children[count];
+       };
 
-/// Get the count of children
-int getChildCount(InternalNode *node, int index)
-{
-       return childrenCountTable[node->has_child][index];
-}
-int getChildIndex(InternalNode *node, int count)
-{
-       return childrenIndexTable[node->has_child][count];
-}
-int *getChildCounts(InternalNode *node)
-{
-       return childrenCountTable[node->has_child];
-}
+       /// Get total number of children
+       int getNumChildren(InternalNode *node)
+       {
+               return numChildrenTable[node->has_child];
+       }
 
-/// Get all children
-void fillChildren(InternalNode *node, Node *children[8], int leaf[8])
-{
-       int count = 0;
-       for (int i = 0; i < 8; i++)
-       {
-               leaf[i] = isLeaf(node, i);
-               if (hasChild(node, i))
-               {
-                       children[i] = getChild(node, count);
-                       count++;
-               }
-               else {
-                       children[i] = NULL;
-                       leaf[i] = 0;
-               }
+       /// Get the count of children
+       int getChildCount(InternalNode *node, int index)
+       {
+               return childrenCountTable[node->has_child][index];
+       }
+       int getChildIndex(InternalNode *node, int count)
+       {
+               return childrenIndexTable[node->has_child][count];
+       }
+       int *getChildCounts(InternalNode *node)
+       {
+               return childrenCountTable[node->has_child];
        }
-}
 
-/// Sets the child pointer
-void setChild(InternalNode *node, int count, Node *chd)
-{
-       node->children[count] = chd;
-}
-void setInternalChild(InternalNode *node, int index, int count, InternalNode *chd)
-{
-       setChild(node, count, (Node *)chd);
-       node->has_child |= (1 << index);
-}
-void setLeafChild(InternalNode *node, int index, int count, LeafNode *chd)
-{
-       setChild(node, count, (Node *)chd);
-       node->has_child |= (1 << index);
-       node->child_is_leaf |= (1 << index);
-}
-
-/// Add a kid to an existing internal node
-/// Fix me: can we do this without wasting memory ?
-/// Fixed: using variable memory
-InternalNode *addChild(InternalNode *node, int index, Node *child, int aLeaf)
-{
-       // Create new internal node
-       int num = getNumChildren(node);
-       InternalNode *rnode = createInternal(num + 1);
-
-       // Establish children
-       int i;
-       int count1 = 0, count2 = 0;
-       for (i = 0; i < 8; i++)
-       {
-               if (i == index)
-               {
-                       if (aLeaf)
-                       {
-                               setLeafChild(rnode, i, count2, &child->leaf);
-                       }
-                       else {
-                               setInternalChild(rnode, i, count2, &child->internal);
-                       }
-                       count2++;
-               }
-               else if (hasChild(node, i))
-               {
-                       if (isLeaf(node, i))
-                       {
-                               setLeafChild(rnode, i, count2, &getChild(node, count1)->leaf);
+       /// Get all children
+       void fillChildren(InternalNode *node, Node *children[8], int leaf[8])
+       {
+               int count = 0;
+               for (int i = 0; i < 8; i++) {
+                       leaf[i] = node->is_child_leaf(i);
+                       if (hasChild(node, i)) {
+                               children[i] = getChild(node, count);
+                               count++;
                        }
                        else {
-                               setInternalChild(rnode, i, count2, &getChild(node, count1)->internal);
+                               children[i] = NULL;
+                               leaf[i] = 0;
                        }
-                       count1++;
-                       count2++;
                }
        }
 
-       removeInternal(num, node);
-       return rnode;
-}
+       /// Sets the child pointer
+       void setChild(InternalNode *node, int count, Node *chd)
+       {
+               node->children[count] = chd;
+       }
+       void setInternalChild(InternalNode *node, int index, int count, InternalNode *chd)
+       {
+               setChild(node, count, (Node *)chd);
+               node->has_child |= (1 << index);
+       }
+       void setLeafChild(InternalNode *node, int index, int count, LeafNode *chd)
+       {
+               setChild(node, count, (Node *)chd);
+               node->has_child |= (1 << index);
+               node->child_is_leaf |= (1 << index);
+       }
 
-/// Allocate a node
-InternalNode *createInternal(int length)
-{
-       InternalNode *inode = (InternalNode *)alloc[length]->allocate();
-       inode->has_child = 0;
-       inode->child_is_leaf = 0;
-       return inode;
-}
+       /// Add a kid to an existing internal node
+       /// Fix me: can we do this without wasting memory ?
+       /// Fixed: using variable memory
+       InternalNode *addChild(InternalNode *node, int index, Node *child, int aLeaf)
+       {
+               // Create new internal node
+               int num = getNumChildren(node);
+               InternalNode *rnode = createInternal(num + 1);
 
-LeafNode *createLeaf(int length)
-{
-       assert(length <= 3);
+               // Establish children
+               int i;
+               int count1 = 0, count2 = 0;
+               for (i = 0; i < 8; i++) {
+                       if (i == index) {
+                               if (aLeaf) {
+                                       setLeafChild(rnode, i, count2, &child->leaf);
+                               }
+                               else {
+                                       setInternalChild(rnode, i, count2, &child->internal);
+                               }
+                               count2++;
+                       }
+                       else if (hasChild(node, i)) {
+                               if (node->is_child_leaf(i)) {
+                                       setLeafChild(rnode, i, count2, &getChild(node, count1)->leaf);
+                               }
+                               else {
+                                       setInternalChild(rnode, i, count2, &getChild(node, count1)->internal);
+                               }
+                               count1++;
+                               count2++;
+                       }
+               }
 
-       LeafNode *lnode = (LeafNode *)leafalloc[length]->allocate();
-       lnode->edge_parity = 0;
-       lnode->primary_edge_intersections = 0;
-       lnode->signs = 0;
+               removeInternal(num, node);
+               return rnode;
+       }
 
-       return lnode;
-}
+       /// Allocate a node
+       InternalNode *createInternal(int length)
+       {
+               InternalNode *inode = (InternalNode *)alloc[length]->allocate();
+               inode->has_child = 0;
+               inode->child_is_leaf = 0;
+               return inode;
+       }
 
-void removeInternal(int num, InternalNode *node)
-{
-       alloc[num]->deallocate(node);
-}
+       LeafNode *createLeaf(int length)
+       {
+               assert(length <= 3);
 
-void removeLeaf(int num, LeafNode *leaf)
-{
-       assert(num >= 0 && num <= 3);
-       leafalloc[num]->deallocate(leaf);
-}
+               LeafNode *lnode = (LeafNode *)leafalloc[length]->allocate();
+               lnode->edge_parity = 0;
+               lnode->primary_edge_intersections = 0;
+               lnode->signs = 0;
 
-/// Add a leaf (by creating a new par node with the leaf added)
-InternalNode *addLeafChild(InternalNode *par, int index, int count,
-                           LeafNode *leaf)
-{
-       int num = getNumChildren(par) + 1;
-       InternalNode *npar = createInternal(num);
-       *npar = *par;
+               return lnode;
+       }
 
-       if (num == 1)
+       void removeInternal(int num, InternalNode *node)
        {
-               setLeafChild(npar, index, 0, leaf);
+               alloc[num]->deallocate(node);
        }
-       else {
-               int i;
-               for (i = 0; i < count; i++)
-               {
-                       setChild(npar, i, getChild(par, i));
-               }
-               setLeafChild(npar, index, count, leaf);
-               for (i = count + 1; i < num; i++)
-               {
-                       setChild(npar, i, getChild(par, i - 1));
-               }
+
+       void removeLeaf(int num, LeafNode *leaf)
+       {
+               assert(num >= 0 && num <= 3);
+               leafalloc[num]->deallocate(leaf);
        }
 
-       removeInternal(num - 1, par);
-       return npar;
-}
+       /// Add a leaf (by creating a new par node with the leaf added)
+       InternalNode *addLeafChild(InternalNode *par, int index, int count,
+                                                          LeafNode *leaf)
+       {
+               int num = getNumChildren(par) + 1;
+               InternalNode *npar = createInternal(num);
+               *npar = *par;
 
-InternalNode *addInternalChild(InternalNode *par, int index, int count,
-                               InternalNode *node)
-{
-       int num = getNumChildren(par) + 1;
-       InternalNode *npar = createInternal(num);
-       *npar = *par;
+               if (num == 1) {
+                       setLeafChild(npar, index, 0, leaf);
+               }
+               else {
+                       int i;
+                       for (i = 0; i < count; i++) {
+                               setChild(npar, i, getChild(par, i));
+                       }
+                       setLeafChild(npar, index, count, leaf);
+                       for (i = count + 1; i < num; i++) {
+                               setChild(npar, i, getChild(par, i - 1));
+                       }
+               }
 
-       if (num == 1)
-       {
-               setInternalChild(npar, index, 0, node);
+               removeInternal(num - 1, par);
+               return npar;
        }
-       else {
-               int i;
-               for (i = 0; i < count; i++)
-               {
-                       setChild(npar, i, getChild(par, i));
+
+       InternalNode *addInternalChild(InternalNode *par, int index, int count,
+                                                                  InternalNode *node)
+       {
+               int num = getNumChildren(par) + 1;
+               InternalNode *npar = createInternal(num);
+               *npar = *par;
+
+               if (num == 1) {
+                       setInternalChild(npar, index, 0, node);
                }
-               setInternalChild(npar, index, count, node);
-               for (i = count + 1; i < num; i++)
-               {
-                       setChild(npar, i, getChild(par, i - 1));
+               else {
+                       int i;
+                       for (i = 0; i < count; i++) {
+                               setChild(npar, i, getChild(par, i));
+                       }
+                       setInternalChild(npar, index, count, node);
+                       for (i = count + 1; i < num; i++) {
+                               setChild(npar, i, getChild(par, i - 1));
+                       }
                }
-       }
 
-       removeInternal(num - 1, par);
-       return npar;
-}
+               removeInternal(num - 1, par);
+               return npar;
+       }
 };
 
 #endif