== povray ==
authorLuca Bonavita <mindrones@gmail.com>
Mon, 2 Aug 2010 01:58:32 +0000 (01:58 +0000)
committerLuca Bonavita <mindrones@gmail.com>
Mon, 2 Aug 2010 01:58:32 +0000 (01:58 +0000)
Removing Povray from here, it is now an addon in bf-extensions (after discussion with Campbell).
This will let us manage better the transition to PovRay3.7 and later versions.

release/scripts/io/engine_render_pov.py [deleted file]

diff --git a/release/scripts/io/engine_render_pov.py b/release/scripts/io/engine_render_pov.py
deleted file mode 100644 (file)
index 9cda437..0000000
+++ /dev/null
@@ -1,1001 +0,0 @@
-# ##### BEGIN GPL LICENSE BLOCK #####
-#
-#  This program is free software; you can redistribute it and/or
-#  modify it under the terms of the GNU General Public License
-#  as published by the Free Software Foundation; either version 2
-#  of the License, or (at your option) any later version.
-#
-#  This program is distributed in the hope that it will be useful,
-#  but WITHOUT ANY WARRANTY; without even the implied warranty of
-#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-#  GNU General Public License for more details.
-#
-#  You should have received a copy of the GNU General Public License
-#  along with this program; if not, write to the Free Software Foundation,
-#  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
-#
-# ##### END GPL LICENSE BLOCK #####
-
-# <pep8 compliant>
-
-import bpy
-
-from math import atan, pi, degrees
-import subprocess
-import os
-import sys
-import time
-
-import platform as pltfrm
-
-if pltfrm.architecture()[0] == '64bit':
-    bitness = 64
-else:
-    bitness = 32
-
-
-def write_pov(filename, scene=None, info_callback=None):
-    file = open(filename, 'w')
-
-    # Only for testing
-    if not scene:
-        scene = bpy.data.scenes[0]
-
-    render = scene.render
-    world = scene.world
-
-    def uniqueName(name, nameSeq):
-
-        if name not in nameSeq:
-            return name
-
-        name_orig = name
-        i = 1
-        while name in nameSeq:
-            name = '%s_%.3d' % (name_orig, i)
-            i += 1
-
-        return name
-
-    def writeMatrix(matrix):
-        file.write('\tmatrix <%.6f, %.6f, %.6f,  %.6f, %.6f, %.6f,  %.6f, %.6f, %.6f,  %.6f, %.6f, %.6f>\n' %\
-        (matrix[0][0], matrix[0][1], matrix[0][2], matrix[1][0], matrix[1][1], matrix[1][2], matrix[2][0], matrix[2][1], matrix[2][2], matrix[3][0], matrix[3][1], matrix[3][2]))
-
-    def writeObjectMaterial(material):
-        if material and material.transparency_method == 'RAYTRACE':
-            file.write('\tinterior { ior %.6f }\n' % material.raytrace_transparency.ior)
-
-            # Other interior args
-            # fade_distance 2
-            # fade_power [Value]
-            # fade_color
-
-            # dispersion
-            # dispersion_samples
-
-    materialNames = {}
-    DEF_MAT_NAME = 'Default'
-
-    def writeMaterial(material):
-        # Assumes only called once on each material
-
-        if material:
-            name_orig = material.name
-        else:
-            name_orig = DEF_MAT_NAME
-
-        name = materialNames[name_orig] = uniqueName(bpy.utils.clean_name(name_orig), materialNames)
-
-        file.write('#declare %s = finish {\n' % name)
-
-        if material:
-            file.write('\tdiffuse %.3g\n' % material.diffuse_intensity)
-            file.write('\tspecular %.3g\n' % material.specular_intensity)
-
-            file.write('\tambient %.3g\n' % material.ambient)
-            #file.write('\tambient rgb <%.3g, %.3g, %.3g>\n' % tuple([c*material.ambient for c in world.ambient_color])) # povray blends the global value
-
-            # map hardness between 0.0 and 1.0
-            roughness = ((1.0 - ((material.specular_hardness - 1.0) / 510.0)))
-            # scale from 0.0 to 0.1
-            roughness *= 0.1
-            # add a small value because 0.0 is invalid
-            roughness += (1 / 511.0)
-
-            file.write('\troughness %.3g\n' % roughness)
-
-            # 'phong 70.0 '
-
-            if material.raytrace_mirror.enabled:
-                raytrace_mirror = material.raytrace_mirror
-                if raytrace_mirror.reflect_factor:
-                    file.write('\treflection {\n')
-                    file.write('\t\trgb <%.3g, %.3g, %.3g>' % tuple(material.mirror_color))
-                    file.write('\t\tfresnel 1 falloff %.3g exponent %.3g metallic %.3g} ' % (raytrace_mirror.fresnel, raytrace_mirror.fresnel_factor, raytrace_mirror.reflect_factor))
-
-        else:
-            file.write('\tdiffuse 0.8\n')
-            file.write('\tspecular 0.2\n')
-
-
-        # This is written into the object
-        '''
-        if material and material.transparency_method=='RAYTRACE':
-            'interior { ior %.3g} ' % material.raytrace_transparency.ior
-        '''
-
-        #file.write('\t\t\tcrand 1.0\n') # Sand granyness
-        #file.write('\t\t\tmetallic %.6f\n' % material.spec)
-        #file.write('\t\t\tphong %.6f\n' % material.spec)
-        #file.write('\t\t\tphong_size %.6f\n' % material.spec)
-        #file.write('\t\t\tbrilliance %.6f ' % (material.specular_hardness/256.0) # Like hardness
-
-        file.write('}\n')
-
-    def exportCamera():
-        camera = scene.camera
-        matrix = camera.matrix_world
-
-        # compute resolution
-        Qsize = float(render.resolution_x) / float(render.resolution_y)
-
-        file.write('camera {\n')
-        file.write('\tlocation  <0, 0, 0>\n')
-        file.write('\tlook_at  <0, 0, -1>\n')
-        file.write('\tright <%s, 0, 0>\n' % - Qsize)
-        file.write('\tup <0, 1, 0>\n')
-        file.write('\tangle  %f \n' % (360.0 * atan(16.0 / camera.data.lens) / pi))
-
-        file.write('\trotate  <%.6f, %.6f, %.6f>\n' % tuple([degrees(e) for e in matrix.rotation_part().to_euler()]))
-        file.write('\ttranslate <%.6f, %.6f, %.6f>\n' % (matrix[3][0], matrix[3][1], matrix[3][2]))
-        file.write('}\n')
-
-    def exportLamps(lamps):
-        # Get all lamps
-        for ob in lamps:
-            lamp = ob.data
-
-            matrix = ob.matrix_world
-
-            color = tuple([c * lamp.energy for c in lamp.color]) # Colour is modified by energy
-
-            file.write('light_source {\n')
-            file.write('\t< 0,0,0 >\n')
-            file.write('\tcolor rgb<%.3g, %.3g, %.3g>\n' % color)
-
-            if lamp.type == 'POINT': # Point Lamp
-                pass
-            elif lamp.type == 'SPOT': # Spot
-                file.write('\tspotlight\n')
-
-                # Falloff is the main radius from the centre line
-                file.write('\tfalloff %.2f\n' % (degrees(lamp.spot_size) / 2.0)) # 1 TO 179 FOR BOTH
-                file.write('\tradius %.6f\n' % ((degrees(lamp.spot_size) / 2.0) * (1.0 - lamp.spot_blend)))
-
-                # Blender does not have a tightness equivilent, 0 is most like blender default.
-                file.write('\ttightness 0\n') # 0:10f
-
-                file.write('\tpoint_at  <0, 0, -1>\n')
-            elif lamp.type == 'SUN':
-                file.write('\tparallel\n')
-                file.write('\tpoint_at  <0, 0, -1>\n') # *must* be after 'parallel'
-
-            elif lamp.type == 'AREA':
-
-                size_x = lamp.size
-                samples_x = lamp.shadow_ray_samples_x
-                if lamp.shape == 'SQUARE':
-                    size_y = size_x
-                    samples_y = samples_x
-                else:
-                    size_y = lamp.size_y
-                    samples_y = lamp.shadow_ray_samples_y
-
-                file.write('\tarea_light <%d,0,0>,<0,0,%d> %d, %d\n' % (size_x, size_y, samples_x, samples_y))
-                if lamp.shadow_ray_sampling_method == 'CONSTANT_JITTERED':
-                    if lamp.jitter:
-                        file.write('\tjitter\n')
-                else:
-                    file.write('\tadaptive 1\n')
-                    file.write('\tjitter\n')
-
-            if lamp.shadow_method == 'NOSHADOW':
-                file.write('\tshadowless\n')
-
-            file.write('\tfade_distance %.6f\n' % lamp.distance)
-            file.write('\tfade_power %d\n' % 1) # Could use blenders lamp quad?
-            writeMatrix(matrix)
-
-            file.write('}\n')
-
-    def exportMeta(metas):
-
-        # TODO - blenders 'motherball' naming is not supported.
-
-        for ob in metas:
-            meta = ob.data
-
-            file.write('blob {\n')
-            file.write('\t\tthreshold %.4g\n' % meta.threshold)
-
-            try:
-                material = meta.materials[0] # lame! - blender cant do enything else.
-            except:
-                material = None
-
-            for elem in meta.elements:
-
-                if elem.type not in ('BALL', 'ELLIPSOID'):
-                    continue # Not supported
-
-                loc = elem.location
-
-                stiffness = elem.stiffness
-                if elem.negative:
-                    stiffness = - stiffness
-
-                if elem.type == 'BALL':
-
-                    file.write('\tsphere { <%.6g, %.6g, %.6g>, %.4g, %.4g ' % (loc.x, loc.y, loc.z, elem.radius, stiffness))
-
-                    # After this wecould do something simple like...
-                    #  "pigment {Blue} }"
-                    # except we'll write the color
-
-                elif elem.type == 'ELLIPSOID':
-                    # location is modified by scale
-                    file.write('\tsphere { <%.6g, %.6g, %.6g>, %.4g, %.4g ' % (loc.x / elem.size_x, loc.y / elem.size_y, loc.z / elem.size_z, elem.radius, stiffness))
-                    file.write('scale <%.6g, %.6g, %.6g> ' % (elem.size_x, elem.size_y, elem.size_z))
-
-                if material:
-                    diffuse_color = material.diffuse_color
-
-                    if material.transparency and material.transparency_method == 'RAYTRACE':
-                        trans = 1.0 - material.raytrace_transparency.filter
-                    else:
-                        trans = 0.0
-
-                    file.write('pigment {rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>} finish {%s} }\n' % \
-                        (diffuse_color[0], diffuse_color[1], diffuse_color[2], 1.0 - material.alpha, trans, materialNames[material.name]))
-
-                else:
-                    file.write('pigment {rgb<1 1 1>} finish {%s} }\n' % DEF_MAT_NAME)          # Write the finish last.
-
-            writeObjectMaterial(material)
-
-            writeMatrix(ob.matrix_world)
-
-            file.write('}\n')
-
-    def exportMeshs(scene, sel):
-
-        ob_num = 0
-
-        for ob in sel:
-            ob_num += 1
-
-            if ob.type in ('LAMP', 'CAMERA', 'EMPTY', 'META', 'ARMATURE'):
-                continue
-
-            me = ob.data
-            me_materials = me.materials
-
-            me = ob.create_mesh(scene, True, 'RENDER')
-
-            if not me:
-                continue
-
-            if info_callback:
-                info_callback('Object %2.d of %2.d (%s)' % (ob_num, len(sel), ob.name))
-
-            #if ob.type!='MESH':
-            #  continue
-            # me = ob.data
-
-            matrix = ob.matrix_world
-            try:
-                uv_layer = me.active_uv_texture.data
-            except:
-                uv_layer = None
-
-            try:
-                vcol_layer = me.active_vertex_color.data
-            except:
-                vcol_layer = None
-
-            faces_verts = [f.verts for f in me.faces]
-            faces_normals = [tuple(f.normal) for f in me.faces]
-            verts_normals = [tuple(v.normal) for v in me.verts]
-
-            # quads incur an extra face
-            quadCount = len([f for f in faces_verts if len(f) == 4])
-
-            file.write('mesh2 {\n')
-            file.write('\tvertex_vectors {\n')
-            file.write('\t\t%s' % (len(me.verts))) # vert count
-            for v in me.verts:
-                file.write(',\n\t\t<%.6f, %.6f, %.6f>' % tuple(v.co)) # vert count
-            file.write('\n  }\n')
-
-
-            # Build unique Normal list
-            uniqueNormals = {}
-            for fi, f in enumerate(me.faces):
-                fv = faces_verts[fi]
-                # [-1] is a dummy index, use a list so we can modify in place
-                if f.smooth: # Use vertex normals
-                    for v in fv:
-                        key = verts_normals[v]
-                        uniqueNormals[key] = [-1]
-                else: # Use face normal
-                    key = faces_normals[fi]
-                    uniqueNormals[key] = [-1]
-
-            file.write('\tnormal_vectors {\n')
-            file.write('\t\t%d' % len(uniqueNormals)) # vert count
-            idx = 0
-            for no, index in uniqueNormals.items():
-                file.write(',\n\t\t<%.6f, %.6f, %.6f>' % no) # vert count
-                index[0] = idx
-                idx += 1
-            file.write('\n  }\n')
-
-
-            # Vertex colours
-            vertCols = {} # Use for material colours also.
-
-            if uv_layer:
-                # Generate unique UV's
-                uniqueUVs = {}
-
-                for fi, uv in enumerate(uv_layer):
-
-                    if len(faces_verts[fi]) == 4:
-                        uvs = uv.uv1, uv.uv2, uv.uv3, uv.uv4
-                    else:
-                        uvs = uv.uv1, uv.uv2, uv.uv3
-
-                    for uv in uvs:
-                        uniqueUVs[tuple(uv)] = [-1]
-
-                file.write('\tuv_vectors {\n')
-                #print unique_uvs
-                file.write('\t\t%s' % (len(uniqueUVs))) # vert count
-                idx = 0
-                for uv, index in uniqueUVs.items():
-                    file.write(',\n\t\t<%.6f, %.6f>' % uv)
-                    index[0] = idx
-                    idx += 1
-                '''
-                else:
-                    # Just add 1 dummy vector, no real UV's
-                    file.write('\t\t1') # vert count
-                    file.write(',\n\t\t<0.0, 0.0>')
-                '''
-                file.write('\n  }\n')
-
-
-            if me.vertex_colors:
-
-                for fi, f in enumerate(me.faces):
-                    material_index = f.material_index
-                    material = me_materials[material_index]
-
-                    if material and material.vertex_color_paint:
-
-                        col = vcol_layer[fi]
-
-                        if len(faces_verts[fi]) == 4:
-                            cols = col.color1, col.color2, col.color3, col.color4
-                        else:
-                            cols = col.color1, col.color2, col.color3
-
-                        for col in cols:
-                            key = col[0], col[1], col[2], material_index # Material index!
-                            vertCols[key] = [-1]
-
-                    else:
-                        if material:
-                            diffuse_color = tuple(material.diffuse_color)
-                            key = diffuse_color[0], diffuse_color[1], diffuse_color[2], material_index
-                            vertCols[key] = [-1]
-
-
-            else:
-                # No vertex colours, so write material colours as vertex colours
-                for i, material in enumerate(me_materials):
-
-                    if material:
-                        diffuse_color = tuple(material.diffuse_color)
-                        key = diffuse_color[0], diffuse_color[1], diffuse_color[2], i # i == f.mat
-                        vertCols[key] = [-1]
-
-
-            # Vert Colours
-            file.write('\ttexture_list {\n')
-            file.write('\t\t%s' % (len(vertCols))) # vert count
-            idx = 0
-            for col, index in vertCols.items():
-
-                if me_materials:
-                    material = me_materials[col[3]]
-                    material_finish = materialNames[material.name]
-
-                    if material.transparency and material.transparency_method == 'RAYTRACE':
-                        trans = 1.0 - material.raytrace_transparency.filter
-                    else:
-                        trans = 0.0
-
-                else:
-                    material_finish = DEF_MAT_NAME # not working properly,
-                    trans = 0.0
-
-                #print material.apl
-                file.write(',\n\t\ttexture { pigment {rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>} finish {%s}}' %
-                            (col[0], col[1], col[2], 1.0 - material.alpha, trans, material_finish))
-
-                index[0] = idx
-                idx += 1
-
-            file.write('\n  }\n')
-
-            # Face indicies
-            file.write('\tface_indices {\n')
-            file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count
-            for fi, f in enumerate(me.faces):
-                fv = faces_verts[fi]
-                material_index = f.material_index
-                if len(fv) == 4:
-                    indicies = (0, 1, 2), (0, 2, 3)
-                else:
-                    indicies = ((0, 1, 2),)
-
-                if vcol_layer:
-                    col = vcol_layer[fi]
-
-                    if len(fv) == 4:
-                        cols = col.color1, col.color2, col.color3, col.color4
-                    else:
-                        cols = col.color1, col.color2, col.color3
-
-
-                if not me_materials or me_materials[material_index] == None: # No materials
-                    for i1, i2, i3 in indicies:
-                        file.write(',\n\t\t<%d,%d,%d>' % (fv[i1], fv[i2], fv[i3])) # vert count
-                else:
-                    material = me_materials[material_index]
-                    for i1, i2, i3 in indicies:
-                        if me.vertex_colors and material.vertex_color_paint:
-                            # Colour per vertex - vertex colour
-
-                            col1 = cols[i1]
-                            col2 = cols[i2]
-                            col3 = cols[i3]
-
-                            ci1 = vertCols[col1[0], col1[1], col1[2], material_index][0]
-                            ci2 = vertCols[col2[0], col2[1], col2[2], material_index][0]
-                            ci3 = vertCols[col3[0], col3[1], col3[2], material_index][0]
-                        else:
-                            # Colour per material - flat material colour
-                            diffuse_color = material.diffuse_color
-                            ci1 = ci2 = ci3 = vertCols[diffuse_color[0], diffuse_color[1], diffuse_color[2], f.material_index][0]
-
-                        file.write(',\n\t\t<%d,%d,%d>, %d,%d,%d' % (fv[i1], fv[i2], fv[i3], ci1, ci2, ci3)) # vert count
-
-
-            file.write('\n  }\n')
-
-            # normal_indices indicies
-            file.write('\tnormal_indices {\n')
-            file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count
-            for fi, fv in enumerate(faces_verts):
-
-                if len(fv) == 4:
-                    indicies = (0, 1, 2), (0, 2, 3)
-                else:
-                    indicies = ((0, 1, 2),)
-
-                for i1, i2, i3 in indicies:
-                    if f.smooth:
-                        file.write(',\n\t\t<%d,%d,%d>' %\
-                        (uniqueNormals[verts_normals[fv[i1]]][0],\
-                         uniqueNormals[verts_normals[fv[i2]]][0],\
-                         uniqueNormals[verts_normals[fv[i3]]][0])) # vert count
-                    else:
-                        idx = uniqueNormals[faces_normals[fi]][0]
-                        file.write(',\n\t\t<%d,%d,%d>' % (idx, idx, idx)) # vert count
-
-            file.write('\n  }\n')
-
-            if uv_layer:
-                file.write('\tuv_indices {\n')
-                file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count
-                for fi, fv in enumerate(faces_verts):
-
-                    if len(fv) == 4:
-                        indicies = (0, 1, 2), (0, 2, 3)
-                    else:
-                        indicies = ((0, 1, 2),)
-
-                    uv = uv_layer[fi]
-                    if len(faces_verts[fi]) == 4:
-                        uvs = tuple(uv.uv1), tuple(uv.uv2), tuple(uv.uv3), tuple(uv.uv4)
-                    else:
-                        uvs = tuple(uv.uv1), tuple(uv.uv2), tuple(uv.uv3)
-
-                    for i1, i2, i3 in indicies:
-                        file.write(',\n\t\t<%d,%d,%d>' %\
-                        (uniqueUVs[uvs[i1]][0],\
-                         uniqueUVs[uvs[i2]][0],\
-                         uniqueUVs[uvs[i2]][0])) # vert count
-                file.write('\n  }\n')
-
-            if me.materials:
-                material = me.materials[0] # dodgy
-                writeObjectMaterial(material)
-
-            writeMatrix(matrix)
-            file.write('}\n')
-
-            bpy.data.meshes.remove(me)
-
-    def exportWorld(world):
-        if not world:
-            return
-
-        mist = world.mist
-
-        if mist.use_mist:
-            file.write('fog {\n')
-            file.write('\tdistance %.6f\n' % mist.depth)
-            file.write('\tcolor rgbt<%.3g, %.3g, %.3g, %.3g>\n' % (tuple(world.horizon_color) + (1 - mist.intensity,)))
-            #file.write('\tfog_offset %.6f\n' % mist.start)
-            #file.write('\tfog_alt 5\n')
-            #file.write('\tturbulence 0.2\n')
-            #file.write('\tturb_depth 0.3\n')
-            file.write('\tfog_type 1\n')
-            file.write('}\n')
-
-    def exportGlobalSettings(scene):
-
-        file.write('global_settings {\n')
-
-        if scene.pov_radio_enable:
-            file.write('\tradiosity {\n')
-            file.write("\t\tadc_bailout %.4g\n" % scene.pov_radio_adc_bailout)
-            file.write("\t\talways_sample %d\n" % scene.pov_radio_always_sample)
-            file.write("\t\tbrightness %.4g\n" % scene.pov_radio_brightness)
-            file.write("\t\tcount %d\n" % scene.pov_radio_count)
-            file.write("\t\terror_bound %.4g\n" % scene.pov_radio_error_bound)
-            file.write("\t\tgray_threshold %.4g\n" % scene.pov_radio_gray_threshold)
-            file.write("\t\tlow_error_factor %.4g\n" % scene.pov_radio_low_error_factor)
-            file.write("\t\tmedia %d\n" % scene.pov_radio_media)
-            file.write("\t\tminimum_reuse %.4g\n" % scene.pov_radio_minimum_reuse)
-            file.write("\t\tnearest_count %d\n" % scene.pov_radio_nearest_count)
-            file.write("\t\tnormal %d\n" % scene.pov_radio_normal)
-            file.write("\t\trecursion_limit %d\n" % scene.pov_radio_recursion_limit)
-            file.write('\t}\n')
-
-        if world:
-            file.write("\tambient_light rgb<%.3g, %.3g, %.3g>\n" % tuple(world.ambient_color))
-
-        file.write('}\n')
-
-
-    # Convert all materials to strings we can access directly per vertex.
-    writeMaterial(None) # default material
-
-    for material in bpy.data.materials:
-        writeMaterial(material)
-
-    exportCamera()
-    #exportMaterials()
-    sel = scene.objects
-    exportLamps([l for l in sel if l.type == 'LAMP'])
-    exportMeta([l for l in sel if l.type == 'META'])
-    exportMeshs(scene, sel)
-    exportWorld(scene.world)
-    exportGlobalSettings(scene)
-
-    file.close()
-
-
-def write_pov_ini(filename_ini, filename_pov, filename_image):
-    scene = bpy.data.scenes[0]
-    render = scene.render
-
-    x = int(render.resolution_x * render.resolution_percentage * 0.01)
-    y = int(render.resolution_y * render.resolution_percentage * 0.01)
-
-    file = open(filename_ini, 'w')
-
-    file.write('Input_File_Name="%s"\n' % filename_pov)
-    file.write('Output_File_Name="%s"\n' % filename_image)
-
-    file.write('Width=%d\n' % x)
-    file.write('Height=%d\n' % y)
-
-    # Needed for border render.
-    '''
-    file.write('Start_Column=%d\n' % part.x)
-    file.write('End_Column=%d\n' % (part.x+part.w))
-
-    file.write('Start_Row=%d\n' % (part.y))
-    file.write('End_Row=%d\n' % (part.y+part.h))
-    '''
-
-    file.write('Display=0\n')
-    file.write('Pause_When_Done=0\n')
-    file.write('Output_File_Type=T\n') # TGA, best progressive loading
-    file.write('Output_Alpha=1\n')
-
-    if render.render_antialiasing:
-        aa_mapping = {'5': 2, '8': 3, '11': 4, '16': 5} # method 1 assumed
-        file.write('Antialias=1\n')
-        file.write('Antialias_Depth=%d\n' % aa_mapping[render.antialiasing_samples])
-    else:
-        file.write('Antialias=0\n')
-
-    file.close()
-
-# Radiosity panel, use in the scene for now.
-FloatProperty = bpy.types.Scene.FloatProperty
-IntProperty = bpy.types.Scene.IntProperty
-BoolProperty = bpy.types.Scene.BoolProperty
-
-# Not a real pov option, just to know if we should write
-BoolProperty(attr="pov_radio_enable",
-                name="Enable Radiosity",
-                description="Enable povrays radiosity calculation",
-                default=False)
-BoolProperty(attr="pov_radio_display_advanced",
-                name="Advanced Options",
-                description="Show advanced options",
-                default=False)
-
-# Real pov options
-FloatProperty(attr="pov_radio_adc_bailout",
-                name="ADC Bailout",
-                description="The adc_bailout for radiosity rays. Use adc_bailout = 0.01 / brightest_ambient_object for good results",
-                min=0.0, max=1000.0, soft_min=0.0, soft_max=1.0, default=0.01)
-
-BoolProperty(attr="pov_radio_always_sample",
-                name="Always Sample",
-                description="Only use the data from the pretrace step and not gather any new samples during the final radiosity pass",
-                default=True)
-
-FloatProperty(attr="pov_radio_brightness",
-                name="Brightness",
-                description="Amount objects are brightened before being returned upwards to the rest of the system",
-                min=0.0, max=1000.0, soft_min=0.0, soft_max=10.0, default=1.0)
-
-IntProperty(attr="pov_radio_count",
-                name="Ray Count",
-                description="Number of rays that are sent out whenever a new radiosity value has to be calculated",
-                min=1, max=1600, default=35)
-
-FloatProperty(attr="pov_radio_error_bound",
-                name="Error Bound",
-                description="One of the two main speed/quality tuning values, lower values are more accurate",
-                min=0.0, max=1000.0, soft_min=0.1, soft_max=10.0, default=1.8)
-
-FloatProperty(attr="pov_radio_gray_threshold",
-                name="Gray Threshold",
-                description="One of the two main speed/quality tuning values, lower values are more accurate",
-                min=0.0, max=1.0, soft_min=0, soft_max=1, default=0.0)
-
-FloatProperty(attr="pov_radio_low_error_factor",
-                name="Low Error Factor",
-                description="If you calculate just enough samples, but no more, you will get an image which has slightly blotchy lighting",
-                min=0.0, max=1.0, soft_min=0.0, soft_max=1.0, default=0.5)
-
-# max_sample - not available yet
-BoolProperty(attr="pov_radio_media",
-                name="Media",
-                description="Radiosity estimation can be affected by media",
-                default=False)
-
-FloatProperty(attr="pov_radio_minimum_reuse",
-                name="Minimum Reuse",
-                description="Fraction of the screen width which sets the minimum radius of reuse for each sample point (At values higher than 2% expect errors)",
-                min=0.0, max=1.0, soft_min=0.1, soft_max=0.1, default=0.015)
-
-IntProperty(attr="pov_radio_nearest_count",
-                name="Nearest Count",
-                description="Number of old ambient values blended together to create a new interpolated value",
-                min=1, max=20, default=5)
-
-BoolProperty(attr="pov_radio_normal",
-                name="Normals",
-                description="Radiosity estimation can be affected by normals",
-                default=False)
-
-IntProperty(attr="pov_radio_recursion_limit",
-                name="Recursion Limit",
-                description="how many recursion levels are used to calculate the diffuse inter-reflection",
-                min=1, max=20, default=3)
-
-
-class PovrayRender(bpy.types.RenderEngine):
-    bl_idname = 'POVRAY_RENDER'
-    bl_label = "Povray"
-    DELAY = 0.02
-
-    def _export(self, scene):
-        import tempfile
-
-        self._temp_file_in = tempfile.mktemp(suffix='.pov')
-        self._temp_file_out = tempfile.mktemp(suffix='.tga')
-        self._temp_file_ini = tempfile.mktemp(suffix='.ini')
-        '''
-        self._temp_file_in = '/test.pov'
-        self._temp_file_out = '/test.tga'
-        self._temp_file_ini = '/test.ini'
-        '''
-
-        def info_callback(txt):
-            self.update_stats("", "POVRAY: " + txt)
-
-        write_pov(self._temp_file_in, scene, info_callback)
-
-    def _render(self):
-
-        try:
-            os.remove(self._temp_file_out) # so as not to load the old file
-        except:
-            pass
-
-        write_pov_ini(self._temp_file_ini, self._temp_file_in, self._temp_file_out)
-
-        print ("***-STARTING-***")
-
-        pov_binary = "povray"
-
-        if sys.platform == 'win32':
-            import winreg
-            regKey = winreg.OpenKey(winreg.HKEY_CURRENT_USER, 'Software\\POV-Ray\\v3.6\\Windows')
-
-            if bitness == 64:
-                pov_binary = winreg.QueryValueEx(regKey, 'Home')[0] + '\\bin\\pvengine64'
-            else:
-                pov_binary = winreg.QueryValueEx(regKey, 'Home')[0] + '\\bin\\pvengine'
-
-        if 1:
-            # TODO, when povray isnt found this gives a cryptic error, would be nice to be able to detect if it exists
-            try:
-                self._process = subprocess.Popen([pov_binary, self._temp_file_ini]) # stdout=subprocess.PIPE, stderr=subprocess.PIPE
-            except OSError:
-                # TODO, report api
-                print("POVRAY: could not execute '%s', possibly povray isn't installed" % pov_binary)
-                import traceback
-                traceback.print_exc()
-                print ("***-DONE-***")
-                return False
-
-        else:
-            # This works too but means we have to wait until its done
-            os.system('%s %s' % (pov_binary, self._temp_file_ini))
-
-        print ("***-DONE-***")
-        return True
-
-    def _cleanup(self):
-        for f in (self._temp_file_in, self._temp_file_ini, self._temp_file_out):
-            try:
-                os.remove(f)
-            except:
-                pass
-
-        self.update_stats("", "")
-
-    def render(self, scene):
-
-        self.update_stats("", "POVRAY: Exporting data from Blender")
-        self._export(scene)
-        self.update_stats("", "POVRAY: Parsing File")
-
-        if not self._render():
-            self.update_stats("", "POVRAY: Not found")
-            return
-
-        r = scene.render
-
-        # compute resolution
-        x = int(r.resolution_x * r.resolution_percentage * 0.01)
-        y = int(r.resolution_y * r.resolution_percentage * 0.01)
-
-        # Wait for the file to be created
-        while not os.path.exists(self._temp_file_out):
-            if self.test_break():
-                try:
-                    self._process.terminate()
-                except:
-                    pass
-                break
-
-            if self._process.poll() != None:
-                self.update_stats("", "POVRAY: Failed")
-                break
-
-            time.sleep(self.DELAY)
-
-        if os.path.exists(self._temp_file_out):
-
-            self.update_stats("", "POVRAY: Rendering")
-
-            prev_size = -1
-
-            def update_image():
-                result = self.begin_result(0, 0, x, y)
-                lay = result.layers[0]
-                # possible the image wont load early on.
-                try:
-                    lay.load_from_file(self._temp_file_out)
-                except:
-                    pass
-                self.end_result(result)
-
-            # Update while povray renders
-            while True:
-
-                # test if povray exists
-                if self._process.poll() is not None:
-                    update_image()
-                    break
-
-                # user exit
-                if self.test_break():
-                    try:
-                        self._process.terminate()
-                    except:
-                        pass
-
-                    break
-
-                # Would be nice to redirect the output
-                # stdout_value, stderr_value = self._process.communicate() # locks
-
-
-                # check if the file updated
-                new_size = os.path.getsize(self._temp_file_out)
-
-                if new_size != prev_size:
-                    update_image()
-                    prev_size = new_size
-
-                time.sleep(self.DELAY)
-
-        self._cleanup()
-
-
-# Use some of the existing buttons.
-import properties_render
-properties_render.RENDER_PT_render.COMPAT_ENGINES.add('POVRAY_RENDER')
-properties_render.RENDER_PT_dimensions.COMPAT_ENGINES.add('POVRAY_RENDER')
-properties_render.RENDER_PT_antialiasing.COMPAT_ENGINES.add('POVRAY_RENDER')
-properties_render.RENDER_PT_output.COMPAT_ENGINES.add('POVRAY_RENDER')
-del properties_render
-
-# Use only a subset of the world panels
-import properties_world
-properties_world.WORLD_PT_preview.COMPAT_ENGINES.add('POVRAY_RENDER')
-properties_world.WORLD_PT_context_world.COMPAT_ENGINES.add('POVRAY_RENDER')
-properties_world.WORLD_PT_world.COMPAT_ENGINES.add('POVRAY_RENDER')
-properties_world.WORLD_PT_mist.COMPAT_ENGINES.add('POVRAY_RENDER')
-del properties_world
-
-# Example of wrapping every class 'as is'
-import properties_material
-for member in dir(properties_material):
-    subclass = getattr(properties_material, member)
-    try:
-        subclass.COMPAT_ENGINES.add('POVRAY_RENDER')
-    except:
-        pass
-del properties_material
-import properties_data_mesh
-for member in dir(properties_data_mesh):
-    subclass = getattr(properties_data_mesh, member)
-    try:
-        subclass.COMPAT_ENGINES.add('POVRAY_RENDER')
-    except:
-        pass
-del properties_data_mesh
-import properties_texture
-for member in dir(properties_texture):
-    subclass = getattr(properties_texture, member)
-    try:
-        subclass.COMPAT_ENGINES.add('POVRAY_RENDER')
-    except:
-        pass
-del properties_texture
-import properties_data_camera
-for member in dir(properties_data_camera):
-    subclass = getattr(properties_data_camera, member)
-    try:
-        subclass.COMPAT_ENGINES.add('POVRAY_RENDER')
-    except:
-        pass
-del properties_data_camera
-
-
-class RenderButtonsPanel(bpy.types.Panel):
-    bl_space_type = 'PROPERTIES'
-    bl_region_type = 'WINDOW'
-    bl_context = "render"
-    # COMPAT_ENGINES must be defined in each subclass, external engines can add themselves here
-
-    def poll(self, context):
-        rd = context.scene.render
-        return (rd.use_game_engine == False) and (rd.engine in self.COMPAT_ENGINES)
-
-
-class RENDER_PT_povray_radiosity(RenderButtonsPanel):
-    bl_label = "Radiosity"
-    COMPAT_ENGINES = {'POVRAY_RENDER'}
-
-    def draw_header(self, context):
-        scene = context.scene
-
-        self.layout.prop(scene, "pov_radio_enable", text="")
-
-    def draw(self, context):
-        layout = self.layout
-
-        scene = context.scene
-        rd = scene.render
-
-        layout.active = scene.pov_radio_enable
-
-        split = layout.split()
-
-        col = split.column()
-        col.prop(scene, "pov_radio_count", text="Rays")
-        col.prop(scene, "pov_radio_recursion_limit", text="Recursions")
-        col = split.column()
-        col.prop(scene, "pov_radio_error_bound", text="Error")
-
-        layout.prop(scene, "pov_radio_display_advanced")
-
-        if scene.pov_radio_display_advanced:
-            split = layout.split()
-
-            col = split.column()
-            col.prop(scene, "pov_radio_adc_bailout", slider=True)
-            col.prop(scene, "pov_radio_gray_threshold", slider=True)
-            col.prop(scene, "pov_radio_low_error_factor", slider=True)
-
-            col = split.column()
-            col.prop(scene, "pov_radio_brightness")
-            col.prop(scene, "pov_radio_minimum_reuse", text="Min Reuse")
-            col.prop(scene, "pov_radio_nearest_count")
-
-            split = layout.split()
-
-            col = split.column()
-            col.label(text="Estimation Influence:")
-            col.prop(scene, "pov_radio_media")
-            col.prop(scene, "pov_radio_normal")
-
-            col = split.column()
-            col.prop(scene, "pov_radio_always_sample")
-
-
-classes = [
-    PovrayRender,
-    RENDER_PT_povray_radiosity]
-
-
-def register():
-    register = bpy.types.register
-    for cls in classes:
-        register(cls)
-
-
-def unregister():
-    unregister = bpy.types.unregister
-    for cls in classes:
-        unregister(cls)
-
-if __name__ == "__main__":
-    register()