Cycles: bvh_cardinal_curve_intersect intro SSE optimization
authorSv. Lockal <lockalsash@gmail.com>
Tue, 4 Feb 2014 19:38:53 +0000 (23:38 +0400)
committerSv. Lockal <lockalsash@gmail.com>
Tue, 4 Feb 2014 19:39:02 +0000 (23:39 +0400)
Gives 5% speedup for koro_final.blend, 10-15% for hair.blend

Reviewed By: brecht

Differential Revision: https://developer.blender.org/D225

intern/cycles/kernel/kernel_bvh.h
intern/cycles/kernel/kernel_bvh_traversal.h
intern/cycles/util/util_simd.h
intern/cycles/util/util_types.h

index 4ddee6f656c696f2b7e450881ca3131c39a8ba87..93e546eaeceb5efc15cace298aa6a999a8c289fb 100644 (file)
@@ -211,8 +211,21 @@ ccl_device_inline void curvebounds(float *lower, float *upper, float *extremta,
        }
 }
 
+#ifdef __KERNEL_SSE2__
+ccl_device_inline __m128 transform_point_T3(const __m128 t[3], const __m128 &a)
+{
+       return fma(broadcast<0>(a), t[0], fma(broadcast<1>(a), t[1], _mm_mul_ps(broadcast<2>(a), t[2])));
+}
+#endif
+
+#ifdef __KERNEL_SSE2__
+/* Pass P and idir by reference to aligned vector */
+ccl_device_inline bool bvh_cardinal_curve_intersect(KernelGlobals *kg, Intersection *isect,
+       const float3 &P, const float3 &idir, uint visibility, int object, int curveAddr, int segment, uint *lcg_state, float difl, float extmax)
+#else
 ccl_device_inline bool bvh_cardinal_curve_intersect(KernelGlobals *kg, Intersection *isect,
        float3 P, float3 idir, uint visibility, int object, int curveAddr, int segment, uint *lcg_state, float difl, float extmax)
+#endif
 {
        float epsilon = 0.0f;
        float r_st, r_en;
@@ -220,7 +233,59 @@ ccl_device_inline bool bvh_cardinal_curve_intersect(KernelGlobals *kg, Intersect
        int depth = kernel_data.curve.subdivisions;
        int flags = kernel_data.curve.curveflags;
        int prim = kernel_tex_fetch(__prim_index, curveAddr);
+
+#ifdef __KERNEL_SSE2__
+       __m128 vdir = _mm_div_ps(_mm_set1_ps(1.0f), (__m128 &)idir);
+       __m128 vcurve_coef[4];
+       const float3 *curve_coef = (float3 *)vcurve_coef;
        
+       {
+               __m128 dtmp = _mm_mul_ps(vdir, vdir);
+               __m128 d_ss = _mm_sqrt_ss(_mm_add_ss(dtmp, broadcast<2>(dtmp)));
+               __m128 rd_ss = _mm_div_ss(_mm_set_ss(1.0f), d_ss);
+
+               __m128i v00vec = _mm_load_si128((__m128i *)&kg->__curves.data[prim]);
+               int2 &v00 = (int2 &)v00vec;
+
+               int k0 = v00.x + segment;
+               int k1 = k0 + 1;
+               int ka = max(k0 - 1, v00.x);
+               int kb = min(k1 + 1, v00.x + v00.y - 1);
+
+               __m128 P0 = _mm_load_ps(&kg->__curve_keys.data[ka].x);
+               __m128 P1 = _mm_load_ps(&kg->__curve_keys.data[k0].x);
+               __m128 P2 = _mm_load_ps(&kg->__curve_keys.data[k1].x);
+               __m128 P3 = _mm_load_ps(&kg->__curve_keys.data[kb].x);
+
+               __m128 rd_sgn = set_sign_bit<0, 1, 1, 1>(broadcast<0>(rd_ss));
+               __m128 mul_zxxy = _mm_mul_ps(shuffle<2, 0, 0, 1>(vdir), rd_sgn);
+               __m128 mul_yz = _mm_mul_ps(shuffle<1, 2, 1, 2>(vdir), mul_zxxy);
+               __m128 mul_shuf = shuffle<0, 1, 2, 3>(mul_zxxy, mul_yz);
+               __m128 vdir0 = _mm_and_ps(vdir, _mm_castsi128_ps(_mm_setr_epi32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0)));
+
+               __m128 htfm0 = shuffle<0, 2, 0, 3>(mul_shuf, vdir0);
+               __m128 htfm1 = shuffle<1, 0, 1, 3>(_mm_set_ss(_mm_cvtss_f32(d_ss)), vdir0);
+               __m128 htfm2 = shuffle<1, 3, 2, 3>(mul_shuf, vdir0);
+
+               __m128 htfm[] = { htfm0, htfm1, htfm2 };
+               __m128 p0 = transform_point_T3(htfm, _mm_sub_ps(P0, (__m128 &)P));
+               __m128 p1 = transform_point_T3(htfm, _mm_sub_ps(P1, (__m128 &)P));
+               __m128 p2 = transform_point_T3(htfm, _mm_sub_ps(P2, (__m128 &)P));
+               __m128 p3 = transform_point_T3(htfm, _mm_sub_ps(P3, (__m128 &)P));
+
+               float fc = 0.71f;
+               __m128 vfc = _mm_set1_ps(fc);
+               __m128 vfcxp3 = _mm_mul_ps(vfc, p3);
+
+               vcurve_coef[0] = p1;
+               vcurve_coef[1] = _mm_mul_ps(vfc, _mm_sub_ps(p2, p0));
+               vcurve_coef[2] = fma(_mm_set1_ps(fc * 2.0f), p0, fma(_mm_set1_ps(fc - 3.0f), p1, fms(_mm_set1_ps(3.0f - 2.0f * fc), p2, vfcxp3)));
+               vcurve_coef[3] = fms(_mm_set1_ps(fc - 2.0f), _mm_sub_ps(p2, p1), fms(vfc, p0, vfcxp3));
+
+               r_st = ((float4 &)P1).w;
+               r_en = ((float4 &)P2).w;
+       }
+#else
        float3 curve_coef[4];
 
        /* curve Intersection check */
@@ -263,7 +328,7 @@ ccl_device_inline bool bvh_cardinal_curve_intersect(KernelGlobals *kg, Intersect
                r_st = P1.w;
                r_en = P2.w;
        }
-       
+#endif
 
        float r_curr = max(r_st, r_en);
 
@@ -302,6 +367,19 @@ ccl_device_inline bool bvh_cardinal_curve_intersect(KernelGlobals *kg, Intersect
        while(!(tree >> (depth))) {
                float i_st = tree * resol;
                float i_en = i_st + (level * resol);
+#ifdef __KERNEL_SSE2__
+               __m128 vi_st = _mm_set1_ps(i_st), vi_en = _mm_set1_ps(i_en);
+               __m128 vp_st = fma(fma(fma(vcurve_coef[3], vi_st, vcurve_coef[2]), vi_st, vcurve_coef[1]), vi_st, vcurve_coef[0]);
+               __m128 vp_en = fma(fma(fma(vcurve_coef[3], vi_en, vcurve_coef[2]), vi_en, vcurve_coef[1]), vi_en, vcurve_coef[0]);
+
+               __m128 vbmin = _mm_min_ps(vp_st, vp_en);
+               __m128 vbmax = _mm_max_ps(vp_st, vp_en);
+
+               float3 &bmin = (float3 &)vbmin, &bmax = (float3 &)vbmax;
+               float &bminx = bmin.x, &bminy = bmin.y, &bminz = bmin.z;
+               float &bmaxx = bmax.x, &bmaxy = bmax.y, &bmaxz = bmax.z;
+               float3 &p_st = (float3 &)vp_st, &p_en = (float3 &)vp_en;
+#else
                float3 p_st = ((curve_coef[3] * i_st + curve_coef[2]) * i_st + curve_coef[1]) * i_st + curve_coef[0];
                float3 p_en = ((curve_coef[3] * i_en + curve_coef[2]) * i_en + curve_coef[1]) * i_en + curve_coef[0];
                
@@ -311,6 +389,7 @@ ccl_device_inline bool bvh_cardinal_curve_intersect(KernelGlobals *kg, Intersect
                float bmaxy = max(p_st.y, p_en.y);
                float bminz = min(p_st.z, p_en.z);
                float bmaxz = max(p_st.z, p_en.z);
+#endif
 
                if(xextrem[0] >= i_st && xextrem[0] <= i_en) {
                        bminx = min(bminx,xextrem[1]);
index b4c63f5682c6a161f55a55127b692fdee4a5b2db..5309a80f31d9cdafac82de26c1a19c5e4ab65c1f 100644 (file)
@@ -55,8 +55,8 @@ ccl_device bool BVH_FUNCTION_NAME
 
        /* ray parameters in registers */
        const float tmax = ray->t;
-       float3 P = ray->P;
-       float3 idir = bvh_inverse_direction(ray->D);
+       ccl_align(16) float3 P = ray->P;
+       ccl_align(16) float3 idir = bvh_inverse_direction(ray->D);
        int object = ~0;
 
 #if FEATURE(BVH_MOTION)
index 2d3a927f227591afe6016c6579ee7b48f8936491..fd5ba1de37b12adfe108145024fa430f4db13120 100644 (file)
@@ -148,6 +148,12 @@ ccl_device_inline const __m128 fma(const __m128& a, const __m128& b, const __m12
        return _mm_add_ps(_mm_mul_ps(a, b), c);
 }
 
+/* calculate a*b-c (replacement for fused multiply-subtract on SSE CPUs) */
+ccl_device_inline const __m128 fms(const __m128& a, const __m128& b, const __m128& c)
+{
+       return _mm_sub_ps(_mm_mul_ps(a, b), c);
+}
+
 template<size_t N> ccl_device_inline const __m128 broadcast(const __m128& a)
 {
        return _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(a), _MM_SHUFFLE(N, N, N, N)));
@@ -168,6 +174,12 @@ ccl_device_inline const __m128 uint32_to_float(const __m128i &in)
        return _mm_add_ps(e, d);
 }
 
+template<size_t S1, size_t S2, size_t S3, size_t S4>
+ccl_device_inline const __m128 set_sign_bit(const __m128 &a)
+{
+       return _mm_xor_ps(a, _mm_castsi128_ps(_mm_setr_epi32(S1 << 31, S2 << 31, S3 << 31, S4 << 31)));
+}
+
 #endif /* __KERNEL_SSE2__ */
 
 CCL_NAMESPACE_END
index 66aab7666678c854915d3ab7608233d62f2d71d4..c770931c69b095f5b37371ba377180b4b9ef256e 100644 (file)
 #if defined(_WIN32) && !defined(FREE_WINDOWS)
 
 #define ccl_device_inline static __forceinline
-#ifdef __KERNEL_64_BIT__
 #define ccl_align(...) __declspec(align(__VA_ARGS__))
+#ifdef __KERNEL_64_BIT__
+#define ccl_try_align(...) __declspec(align(__VA_ARGS__))
 #else
-#define ccl_align(...) /* not support for function arguments (error C2719) */
+#define ccl_try_align(...) /* not support for function arguments (error C2719) */
 #endif
 #define ccl_may_alias
 #define ccl_always_inline __forceinline
 #else
 
 #define ccl_device_inline static inline __attribute__((always_inline))
+#define ccl_align(...) __attribute__((aligned(__VA_ARGS__)))
 #ifndef FREE_WINDOWS64
 #define __forceinline inline __attribute__((always_inline))
 #endif
-#define ccl_align(...) __attribute__((aligned(__VA_ARGS__)))
+#define ccl_try_align(...) __attribute__((aligned(__VA_ARGS__)))
 #define ccl_may_alias __attribute__((__may_alias__))
 #define ccl_always_inline __attribute__((always_inline))
 
 #endif
 
+#else
+#define ccl_align(...)
 #endif
 
 /* Standard Integer Types */
@@ -156,7 +160,7 @@ struct int2 {
 };
 
 #ifdef __KERNEL_SSE__
-struct ccl_align(16) int3 {
+struct ccl_try_align(16) int3 {
        union {
                __m128i m128;
                struct { int x, y, z, w; };
@@ -167,7 +171,7 @@ struct ccl_align(16) int3 {
        __forceinline operator const __m128i&(void) const { return m128; }
        __forceinline operator __m128i&(void) { return m128; }
 #else
-struct ccl_align(16) int3 {
+struct ccl_try_align(16) int3 {
        int x, y, z, w;
 #endif
 
@@ -176,7 +180,7 @@ struct ccl_align(16) int3 {
 };
 
 #ifdef __KERNEL_SSE__
-struct ccl_align(16) int4 {
+struct ccl_try_align(16) int4 {
        union {
                __m128i m128;
                struct { int x, y, z, w; };
@@ -187,7 +191,7 @@ struct ccl_align(16) int4 {
        __forceinline operator const __m128i&(void) const { return m128; }
        __forceinline operator __m128i&(void) { return m128; }
 #else
-struct ccl_align(16) int4 {
+struct ccl_try_align(16) int4 {
        int x, y, z, w;
 #endif
 
@@ -224,7 +228,7 @@ struct float2 {
 };
 
 #ifdef __KERNEL_SSE__
-struct ccl_align(16) float3 {
+struct ccl_try_align(16) float3 {
        union {
                __m128 m128;
                struct { float x, y, z, w; };
@@ -235,7 +239,7 @@ struct ccl_align(16) float3 {
        __forceinline operator const __m128&(void) const { return m128; }
        __forceinline operator __m128&(void) { return m128; }
 #else
-struct ccl_align(16) float3 {
+struct ccl_try_align(16) float3 {
        float x, y, z, w;
 #endif
 
@@ -244,7 +248,7 @@ struct ccl_align(16) float3 {
 };
 
 #ifdef __KERNEL_SSE__
-struct ccl_align(16) float4 {
+struct ccl_try_align(16) float4 {
        union {
                __m128 m128;
                struct { float x, y, z, w; };
@@ -255,7 +259,7 @@ struct ccl_align(16) float4 {
        __forceinline operator const __m128&(void) const { return m128; }
        __forceinline operator __m128&(void) { return m128; }
 #else
-struct ccl_align(16) float4 {
+struct ccl_try_align(16) float4 {
        float x, y, z, w;
 #endif